Merge pull request #639 from chiphogg/chiphogg/jacobi#509

Add utilities to make Strong Lucas tests easier
This commit is contained in:
Mateusz Pusz
2024-11-15 15:57:09 +01:00
committed by GitHub
2 changed files with 120 additions and 0 deletions

View File

@ -183,6 +183,83 @@ struct NumberDecomposition {
return false;
}
// The Jacobi symbol, notated as `(a/n)`, is defined for odd positive `n` and any integer `a`, taking values
// in the set `{-1, 0, 1}`. Besides being a completely multiplicative function (so that, for example, both
// (a*b/n) = (a/n) * (b/n), and (a/n*m) = (a/n) * (a/m)), it obeys the following symmetry rules, which enable
// its calculation:
//
// 1. (a/1) = 1, and (1/n) = 1, for all a and n.
//
// 2. (a/n) = 0 whenever a and n have a nontrivial common factor.
//
// 3. (a/n) = (b/n) whenever (a % n) = (b % n).
//
// 4. (2a/n) = (a/n) if n % 8 = 1 or 7, and -(a/n) if n % 8 = 3 or 5.
//
// 5. (a/n) = (n/a) * x if a and n are both odd, positive, and coprime. Here, x is 1 if either (a % 4) = 1
// or (n % 4) = 1, and -1 otherwise.
//
// 6. (-1/n) = 1 if n % 4 = 1, and -1 if n % 4 = 3.
[[nodiscard]] consteval int jacobi_symbol(std::int64_t raw_a, std::uint64_t n)
{
// Rule 1: n=1 case.
if (n == 1u) {
return 1;
}
// Starting conditions: transform `a` to strictly non-negative values, setting `result` to the sign that we
// pick up (if any) from following these rules (i.e., rules 3 and 6).
int result = ((raw_a >= 0) || (n % 4u == 1u)) ? 1 : -1;
auto a = static_cast<std::uint64_t>(raw_a < 0 ? -raw_a : raw_a) % n;
while (a != 0u) {
// Rule 4.
const int sign_for_even = (n % 8u == 1u || n % 8u == 7u) ? 1 : -1;
while (a % 2u == 0u) {
a /= 2u;
result *= sign_for_even;
}
// Rule 1: a=1 case.
if (a == 1u) {
return result;
}
// Rule 2.
if (std::gcd(a, n) != 1u) {
return 0;
}
// Note that at this point, we know that `a` and `n` are coprime, and are both odd and positive.
// Therefore, we meet the preconditions for rule 5 (the "flip-and-reduce" rule).
result *= (n % 4u == 1u || a % 4u == 1u) ? 1 : -1;
const std::uint64_t new_a = n % a;
n = a;
a = new_a;
}
return 0;
}
[[nodiscard]] consteval bool is_perfect_square(std::uint64_t n)
{
if (n < 2u) {
return true;
}
std::uint64_t prev = n / 2u;
while (true) {
const std::uint64_t curr = (prev + n / prev) / 2u;
if (curr * curr == n) {
return true;
}
if (curr >= prev) {
return false;
}
prev = curr;
}
}
[[nodiscard]] consteval bool is_prime_by_trial_division(std::uintmax_t n)
{
for (std::uintmax_t f = 2; f * f <= n; f += 1 + (f % 2)) {

View File

@ -122,4 +122,47 @@ static_assert(miller_rabin_probable_prime(2u, 9'007'199'254'740'881u), "Large kn
static_assert(miller_rabin_probable_prime(2u, 18'446'744'073'709'551'557u), "Largest 64-bit prime");
// Jacobi symbols --- a building block for the Strong Lucas probable prime test, needed for Baillie-PSW.
static_assert(jacobi_symbol(1, 1u) == 1, "Jacobi symbol always 1 when 'numerator' is 1");
static_assert(jacobi_symbol(1, 3u) == 1, "Jacobi symbol always 1 when 'numerator' is 1");
static_assert(jacobi_symbol(1, 5u) == 1, "Jacobi symbol always 1 when 'numerator' is 1");
static_assert(jacobi_symbol(1, 987654321u) == 1, "Jacobi symbol always 1 when 'numerator' is 1");
static_assert(jacobi_symbol(3, 1u) == 1, "Jacobi symbol always 1 when 'denominator' is 1");
static_assert(jacobi_symbol(5, 1u) == 1, "Jacobi symbol always 1 when 'denominator' is 1");
static_assert(jacobi_symbol(-1234567890, 1u) == 1, "Jacobi symbol always 1 when 'denominator' is 1");
static_assert(jacobi_symbol(10, 5u) == 0, "Jacobi symbol always 0 when there's a common factor");
static_assert(jacobi_symbol(25, 15u) == 0, "Jacobi symbol always 0 when there's a common factor");
static_assert(jacobi_symbol(-24, 9u) == 0, "Jacobi symbol always 0 when there's a common factor");
static_assert(jacobi_symbol(14, 9u) == +jacobi_symbol(7, 9u),
"Divide numerator by 2: positive when (denom % 8) in {1, 7}");
static_assert(jacobi_symbol(14, 15u) == +jacobi_symbol(7, 15u),
"Divide numerator by 2: positive when (denom % 8) in {1, 7}");
static_assert(jacobi_symbol(14, 11u) == -jacobi_symbol(7, 11u),
"Divide numerator by 2: negative when (denom % 8) in {3, 5}");
static_assert(jacobi_symbol(14, 13u) == -jacobi_symbol(7, 13u),
"Divide numerator by 2: negative when (denom % 8) in {3, 5}");
static_assert(jacobi_symbol(19, 9u) == +jacobi_symbol(9, 19u), "Flip is identity when (n % 4) = 1");
static_assert(jacobi_symbol(17, 7u) == +jacobi_symbol(7, 17u), "Flip is identity when (a % 4) = 1");
static_assert(jacobi_symbol(19, 7u) == -jacobi_symbol(9, 7u), "Flip changes sign when (n % 4) = 3 and (a % 4) = 3");
static_assert(jacobi_symbol(1001, 9907u) == -1, "Example from Wikipedia page");
static_assert(jacobi_symbol(19, 45u) == 1, "Example from Wikipedia page");
static_assert(jacobi_symbol(8, 21u) == -1, "Example from Wikipedia page");
static_assert(jacobi_symbol(5, 21u) == 1, "Example from Wikipedia page");
// Tests for perfect square finder
static_assert(is_perfect_square(0u));
static_assert(is_perfect_square(1u));
static_assert(!is_perfect_square(2u));
static_assert(is_perfect_square(4u));
constexpr std::uint64_t BIG_SQUARE = [](auto x) { return x * x; }((std::uint64_t{1u} << 32) - 1u);
static_assert(!is_perfect_square(BIG_SQUARE - 1u));
static_assert(is_perfect_square(BIG_SQUARE));
static_assert(!is_perfect_square(BIG_SQUARE + 1u));
} // namespace