mirror of
https://github.com/mpusz/mp-units.git
synced 2025-06-25 01:01:33 +02:00
Replace old factoring with Baillie-PSW
This commit is contained in:
@ -401,30 +401,6 @@ struct LucasSequenceElement {
|
||||
return strong_lucas_probable_prime(n);
|
||||
}
|
||||
|
||||
[[nodiscard]] consteval bool is_prime_by_trial_division(std::uintmax_t n)
|
||||
{
|
||||
for (std::uintmax_t f = 2; f * f <= n; f += 1 + (f % 2)) {
|
||||
if (n % f == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Return the first factor of n, as long as it is either k or n.
|
||||
//
|
||||
// Precondition: no integer smaller than k evenly divides n.
|
||||
[[nodiscard]] constexpr std::optional<std::uintmax_t> first_factor_maybe(std::uintmax_t n, std::uintmax_t k)
|
||||
{
|
||||
if (n % k == 0) {
|
||||
return k;
|
||||
}
|
||||
if (k * k > n) {
|
||||
return n;
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
template<std::size_t N>
|
||||
[[nodiscard]] consteval std::array<std::uintmax_t, N> first_n_primes()
|
||||
{
|
||||
@ -432,42 +408,13 @@ template<std::size_t N>
|
||||
primes[0] = 2;
|
||||
for (std::size_t i = 1; i < N; ++i) {
|
||||
primes[i] = primes[i - 1] + 1;
|
||||
while (!is_prime_by_trial_division(primes[i])) {
|
||||
while (!baillie_psw_probable_prime(primes[i])) {
|
||||
++primes[i];
|
||||
}
|
||||
}
|
||||
return primes;
|
||||
}
|
||||
|
||||
template<std::size_t N, typename Callable>
|
||||
consteval void call_for_coprimes_up_to(std::uintmax_t n, const std::array<std::uintmax_t, N>& basis, Callable call)
|
||||
{
|
||||
for (std::uintmax_t i = 0u; i < n; ++i) {
|
||||
if (std::apply([&i](auto... primes) { return ((i % primes != 0) && ...); }, basis)) {
|
||||
call(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<std::size_t N>
|
||||
[[nodiscard]] consteval std::size_t num_coprimes_up_to(std::uintmax_t n, const std::array<std::uintmax_t, N>& basis)
|
||||
{
|
||||
std::size_t count = 0u;
|
||||
call_for_coprimes_up_to(n, basis, [&count](auto) { ++count; });
|
||||
return count;
|
||||
}
|
||||
|
||||
template<std::size_t ResultSize, std::size_t N>
|
||||
[[nodiscard]] consteval auto coprimes_up_to(std::size_t n, const std::array<std::uintmax_t, N>& basis)
|
||||
{
|
||||
std::array<std::uintmax_t, ResultSize> coprimes{};
|
||||
std::size_t i = 0u;
|
||||
|
||||
call_for_coprimes_up_to(n, basis, [&coprimes, &i](std::uintmax_t cp) { coprimes[i++] = cp; });
|
||||
|
||||
return coprimes;
|
||||
}
|
||||
|
||||
template<std::size_t N>
|
||||
[[nodiscard]] consteval std::uintmax_t product(const std::array<std::uintmax_t, N>& values)
|
||||
{
|
||||
@ -494,48 +441,34 @@ constexpr auto get_first_of(const Rng& rng, UnaryFunction f)
|
||||
return get_first_of(begin(rng), end(rng), f);
|
||||
}
|
||||
|
||||
// A configurable instantiation of the "wheel factorization" algorithm [1] for prime numbers.
|
||||
//
|
||||
// Instantiate with N to use a "basis" of the first N prime numbers. Higher values of N use fewer trial divisions, at
|
||||
// the cost of additional space. The amount of space consumed is roughly the total number of numbers that are a) less
|
||||
// than the _product_ of the basis elements (first N primes), and b) coprime with every element of the basis. This
|
||||
// means it grows rapidly with N. Consider this approximate chart:
|
||||
//
|
||||
// N | Num coprimes | Trial divisions needed
|
||||
// --+--------------+-----------------------
|
||||
// 1 | 1 | 50.0 %
|
||||
// 2 | 2 | 33.3 %
|
||||
// 3 | 8 | 26.7 %
|
||||
// 4 | 48 | 22.9 %
|
||||
// 5 | 480 | 20.8 %
|
||||
//
|
||||
// Note the diminishing returns, and the rapidly escalating costs. Consider this behaviour when choosing the value of N
|
||||
// most appropriate for your needs.
|
||||
//
|
||||
// [1] https://en.wikipedia.org/wiki/Wheel_factorization
|
||||
template<std::size_t BasisSize>
|
||||
struct wheel_factorizer {
|
||||
static constexpr auto basis = first_n_primes<BasisSize>();
|
||||
static constexpr auto wheel_size = product(basis);
|
||||
static constexpr auto coprimes_in_first_wheel =
|
||||
coprimes_up_to<num_coprimes_up_to(wheel_size, basis)>(wheel_size, basis);
|
||||
[[nodiscard]] consteval std::uintmax_t find_first_factor(std::uintmax_t n)
|
||||
{
|
||||
constexpr auto first_100_primes = first_n_primes<100>();
|
||||
|
||||
[[nodiscard]] static consteval std::uintmax_t find_first_factor(std::uintmax_t n)
|
||||
{
|
||||
if (const auto k = detail::get_first_of(basis, [&](auto p) { return first_factor_maybe(n, p); })) return *k;
|
||||
for (const auto& p : first_100_primes) {
|
||||
if (n % p == 0u) {
|
||||
return p;
|
||||
}
|
||||
if (p * p > n) {
|
||||
return n;
|
||||
}
|
||||
}
|
||||
|
||||
if (const auto k = detail::get_first_of(std::next(begin(coprimes_in_first_wheel)), end(coprimes_in_first_wheel),
|
||||
[&](auto p) { return first_factor_maybe(n, p); }))
|
||||
return *k;
|
||||
|
||||
for (std::size_t wheel = wheel_size; wheel < n; wheel += wheel_size)
|
||||
if (const auto k =
|
||||
detail::get_first_of(coprimes_in_first_wheel, [&](auto p) { return first_factor_maybe(n, wheel + p); }))
|
||||
return *k;
|
||||
// If we got this far, and we haven't found a factor, and haven't terminated... maybe it's prime? Do a fast check.
|
||||
if (baillie_psw_probable_prime(n)) {
|
||||
return n;
|
||||
}
|
||||
|
||||
[[nodiscard]] static consteval bool is_prime(std::size_t n) { return (n > 1) && find_first_factor(n) == n; }
|
||||
};
|
||||
// If we're here, we know `n` is composite, so continue with trial division for all odd numbers.
|
||||
std::uintmax_t factor = first_100_primes.back() + 2u;
|
||||
while (factor * factor <= n) {
|
||||
if (n % factor == 0u) {
|
||||
return factor;
|
||||
}
|
||||
factor += 2u;
|
||||
}
|
||||
|
||||
return n; // Technically unreachable.
|
||||
}
|
||||
|
||||
} // namespace mp_units::detail
|
||||
|
@ -51,13 +51,6 @@ import std;
|
||||
|
||||
namespace mp_units {
|
||||
|
||||
namespace detail {
|
||||
|
||||
// Higher numbers use fewer trial divisions, at the price of more storage space.
|
||||
using factorizer = wheel_factorizer<4>;
|
||||
|
||||
} // namespace detail
|
||||
|
||||
#if defined MP_UNITS_COMP_CLANG || MP_UNITS_COMP_CLANG < 18
|
||||
|
||||
MP_UNITS_EXPORT template<symbol_text Symbol>
|
||||
@ -629,14 +622,10 @@ using common_magnitude_type = decltype(_common_magnitude_type_impl(M));
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// `mag()` implementation.
|
||||
|
||||
// Sometimes we need to give the compiler a "shortcut" when factorizing large numbers (specifically, numbers whose
|
||||
// _first factor_ is very large). If we don't, we can run into limits on the number of constexpr steps or iterations.
|
||||
//
|
||||
// To provide the first factor for a given number, specialize this variable template.
|
||||
//
|
||||
// WARNING: The program behaviour will be undefined if you provide a wrong answer, so check your math!
|
||||
MP_UNITS_EXPORT template<std::intmax_t N>
|
||||
constexpr std::optional<std::intmax_t> known_first_factor = std::nullopt;
|
||||
[[deprecated("`known_first_factor` is no longer necessary and can simply be removed")]]
|
||||
constexpr std::optional<std::intmax_t>
|
||||
known_first_factor = std::nullopt;
|
||||
|
||||
namespace detail {
|
||||
|
||||
@ -646,12 +635,7 @@ template<std::intmax_t N>
|
||||
struct prime_factorization {
|
||||
[[nodiscard]] static consteval std::intmax_t get_or_compute_first_factor()
|
||||
{
|
||||
constexpr auto opt = known_first_factor<N>;
|
||||
if constexpr (opt.has_value()) {
|
||||
return opt.value(); // NOLINT(bugprone-unchecked-optional-access)
|
||||
} else {
|
||||
return static_cast<std::intmax_t>(factorizer::find_first_factor(N));
|
||||
}
|
||||
return static_cast<std::intmax_t>(find_first_factor(N));
|
||||
}
|
||||
|
||||
static constexpr std::intmax_t first_base = get_or_compute_first_factor();
|
||||
|
@ -35,9 +35,6 @@
|
||||
MP_UNITS_EXPORT
|
||||
namespace mp_units {
|
||||
|
||||
template<>
|
||||
constexpr std::optional<std::intmax_t> known_first_factor<334'524'384'739> = 334'524'384'739;
|
||||
|
||||
namespace hep {
|
||||
|
||||
// energy
|
||||
|
@ -31,9 +31,6 @@ import mp_units;
|
||||
using namespace units;
|
||||
using namespace units::detail;
|
||||
|
||||
template<>
|
||||
constexpr std::optional<std::intmax_t> units::known_first_factor<9223372036854775783> = 9223372036854775783;
|
||||
|
||||
namespace {
|
||||
|
||||
// A set of non-standard bases for testing purposes.
|
||||
@ -182,20 +179,6 @@ static_assert(std::is_same_v<decltype(get_base(power_v<mag_2, 5, 8>{})), mag_2_>
|
||||
// mag_ratio<16'605'390'666'050, 10'000'000'000'000>();
|
||||
// }
|
||||
|
||||
// SECTION("Can bypass computing primes by providing known_first_factor<N>")
|
||||
// {
|
||||
// // Sometimes, even wheel factorization isn't enough to handle the compilers' limits on constexpr steps and/or
|
||||
// // iterations. To work around these cases, we can explicitly provide the correct answer directly to the
|
||||
// compiler.
|
||||
// //
|
||||
// // In this case, we test that we can represent the largest prime that fits in a signed 64-bit int. The reason
|
||||
// this
|
||||
// // test can pass is that we have provided the answer, by specializing the `known_first_factor` variable template
|
||||
// // above in this file.
|
||||
// mag<9'223'372'036'854'775'783>();
|
||||
// }
|
||||
// }
|
||||
|
||||
// TEST_CASE("magnitude converts to numerical value")
|
||||
// {
|
||||
// SECTION("Positive integer powers of integer bases give integer values")
|
||||
|
@ -35,51 +35,6 @@ namespace {
|
||||
|
||||
inline constexpr auto MAX_U64 = std::numeric_limits<std::uint64_t>::max();
|
||||
|
||||
template<std::size_t BasisSize, std::size_t... Is>
|
||||
constexpr bool check_primes(std::index_sequence<Is...>)
|
||||
{
|
||||
return ((Is < 2 || wheel_factorizer<BasisSize>::is_prime(Is) == is_prime_by_trial_division(Is)) && ...);
|
||||
}
|
||||
|
||||
static_assert(check_primes<2>(std::make_index_sequence<122>{}));
|
||||
|
||||
// This is the smallest number that can catch the bug where we use only _prime_ numbers in the first wheel, rather than
|
||||
// numbers which are _coprime to the basis_.
|
||||
//
|
||||
// The basis for N = 4 is {2, 3, 5, 7}, so the wheel size is 210. 11 * 11 = 121 is within the first wheel. It is
|
||||
// coprime with every element of the basis, but it is _not_ prime. If we keep only prime numbers, then we will neglect
|
||||
// using numbers of the form (210 * n + 121) as trial divisors, which is a problem if any are prime. For n = 1, we have
|
||||
// a divisor of (210 + 121 = 331), which happens to be prime but will not be used. Thus, (331 * 331 = 109561) is a
|
||||
// composite number which could wrongly appear prime if we skip over 331.
|
||||
static_assert(wheel_factorizer<4>::is_prime(109'561) == is_prime_by_trial_division(109'561));
|
||||
|
||||
static_assert(wheel_factorizer<1>::coprimes_in_first_wheel.size() == 1);
|
||||
static_assert(wheel_factorizer<2>::coprimes_in_first_wheel.size() == 2);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel.size() == 8);
|
||||
static_assert(wheel_factorizer<4>::coprimes_in_first_wheel.size() == 48);
|
||||
static_assert(wheel_factorizer<5>::coprimes_in_first_wheel.size() == 480);
|
||||
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[0] == 1);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[1] == 7);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[2] == 11);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[3] == 13);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[4] == 17);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[5] == 19);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[6] == 23);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[7] == 29);
|
||||
|
||||
static_assert(!wheel_factorizer<1>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<1>::is_prime(1));
|
||||
static_assert(wheel_factorizer<1>::is_prime(2));
|
||||
|
||||
static_assert(!wheel_factorizer<2>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<2>::is_prime(1));
|
||||
static_assert(wheel_factorizer<2>::is_prime(2));
|
||||
|
||||
static_assert(!wheel_factorizer<3>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<3>::is_prime(1));
|
||||
static_assert(wheel_factorizer<3>::is_prime(2));
|
||||
|
||||
// Modular arithmetic.
|
||||
static_assert(add_mod(1u, 2u, 5u) == 3u);
|
||||
static_assert(add_mod(4u, 4u, 5u) == 3u);
|
||||
|
Reference in New Issue
Block a user