mirror of
https://github.com/mpusz/mp-units.git
synced 2025-06-25 01:01:33 +02:00
Replace old factoring with Baillie-PSW
This commit is contained in:
@ -31,9 +31,6 @@ import mp_units;
|
||||
using namespace units;
|
||||
using namespace units::detail;
|
||||
|
||||
template<>
|
||||
constexpr std::optional<std::intmax_t> units::known_first_factor<9223372036854775783> = 9223372036854775783;
|
||||
|
||||
namespace {
|
||||
|
||||
// A set of non-standard bases for testing purposes.
|
||||
@ -182,20 +179,6 @@ static_assert(std::is_same_v<decltype(get_base(power_v<mag_2, 5, 8>{})), mag_2_>
|
||||
// mag_ratio<16'605'390'666'050, 10'000'000'000'000>();
|
||||
// }
|
||||
|
||||
// SECTION("Can bypass computing primes by providing known_first_factor<N>")
|
||||
// {
|
||||
// // Sometimes, even wheel factorization isn't enough to handle the compilers' limits on constexpr steps and/or
|
||||
// // iterations. To work around these cases, we can explicitly provide the correct answer directly to the
|
||||
// compiler.
|
||||
// //
|
||||
// // In this case, we test that we can represent the largest prime that fits in a signed 64-bit int. The reason
|
||||
// this
|
||||
// // test can pass is that we have provided the answer, by specializing the `known_first_factor` variable template
|
||||
// // above in this file.
|
||||
// mag<9'223'372'036'854'775'783>();
|
||||
// }
|
||||
// }
|
||||
|
||||
// TEST_CASE("magnitude converts to numerical value")
|
||||
// {
|
||||
// SECTION("Positive integer powers of integer bases give integer values")
|
||||
|
@ -35,51 +35,6 @@ namespace {
|
||||
|
||||
inline constexpr auto MAX_U64 = std::numeric_limits<std::uint64_t>::max();
|
||||
|
||||
template<std::size_t BasisSize, std::size_t... Is>
|
||||
constexpr bool check_primes(std::index_sequence<Is...>)
|
||||
{
|
||||
return ((Is < 2 || wheel_factorizer<BasisSize>::is_prime(Is) == is_prime_by_trial_division(Is)) && ...);
|
||||
}
|
||||
|
||||
static_assert(check_primes<2>(std::make_index_sequence<122>{}));
|
||||
|
||||
// This is the smallest number that can catch the bug where we use only _prime_ numbers in the first wheel, rather than
|
||||
// numbers which are _coprime to the basis_.
|
||||
//
|
||||
// The basis for N = 4 is {2, 3, 5, 7}, so the wheel size is 210. 11 * 11 = 121 is within the first wheel. It is
|
||||
// coprime with every element of the basis, but it is _not_ prime. If we keep only prime numbers, then we will neglect
|
||||
// using numbers of the form (210 * n + 121) as trial divisors, which is a problem if any are prime. For n = 1, we have
|
||||
// a divisor of (210 + 121 = 331), which happens to be prime but will not be used. Thus, (331 * 331 = 109561) is a
|
||||
// composite number which could wrongly appear prime if we skip over 331.
|
||||
static_assert(wheel_factorizer<4>::is_prime(109'561) == is_prime_by_trial_division(109'561));
|
||||
|
||||
static_assert(wheel_factorizer<1>::coprimes_in_first_wheel.size() == 1);
|
||||
static_assert(wheel_factorizer<2>::coprimes_in_first_wheel.size() == 2);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel.size() == 8);
|
||||
static_assert(wheel_factorizer<4>::coprimes_in_first_wheel.size() == 48);
|
||||
static_assert(wheel_factorizer<5>::coprimes_in_first_wheel.size() == 480);
|
||||
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[0] == 1);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[1] == 7);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[2] == 11);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[3] == 13);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[4] == 17);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[5] == 19);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[6] == 23);
|
||||
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[7] == 29);
|
||||
|
||||
static_assert(!wheel_factorizer<1>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<1>::is_prime(1));
|
||||
static_assert(wheel_factorizer<1>::is_prime(2));
|
||||
|
||||
static_assert(!wheel_factorizer<2>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<2>::is_prime(1));
|
||||
static_assert(wheel_factorizer<2>::is_prime(2));
|
||||
|
||||
static_assert(!wheel_factorizer<3>::is_prime(0));
|
||||
static_assert(!wheel_factorizer<3>::is_prime(1));
|
||||
static_assert(wheel_factorizer<3>::is_prime(2));
|
||||
|
||||
// Modular arithmetic.
|
||||
static_assert(add_mod(1u, 2u, 5u) == 3u);
|
||||
static_assert(add_mod(4u, 4u, 5u) == 3u);
|
||||
|
Reference in New Issue
Block a user