Fix formatting

This commit is contained in:
Chip Hogg
2024-07-24 19:48:05 -04:00
parent 7e894788d7
commit f6696e8f68
2 changed files with 109 additions and 112 deletions

View File

@ -307,118 +307,118 @@ template<typename T>
return checked_square(int_power(base, exp / 2));
}
template <typename T>
[[nodiscard]] consteval std::optional<T> checked_int_pow(T base, std::uintmax_t exp) {
T result = T{1};
while (exp > 0u) {
if (exp % 2u == 1u) {
if (base > std::numeric_limits<T>::max() / result) {
return std::nullopt;
}
result *= base;
}
exp /= 2u;
if (base > std::numeric_limits<T>::max() / base) {
return (exp == 0u)
? std::make_optional(result)
: std::nullopt;
}
base *= base;
template<typename T>
[[nodiscard]] consteval std::optional<T> checked_int_pow(T base, std::uintmax_t exp)
{
T result = T{1};
while (exp > 0u) {
if (exp % 2u == 1u) {
if (base > std::numeric_limits<T>::max() / result) {
return std::nullopt;
}
result *= base;
}
return result;
exp /= 2u;
if (base > std::numeric_limits<T>::max() / base) {
return (exp == 0u) ? std::make_optional(result) : std::nullopt;
}
base *= base;
}
return result;
}
template <typename T>
[[nodiscard]] consteval std::optional<T> root(T x, std::uintmax_t n) {
// The "zeroth root" would be mathematically undefined.
if (n == 0) {
template<typename T>
[[nodiscard]] consteval std::optional<T> root(T x, std::uintmax_t n)
{
// The "zeroth root" would be mathematically undefined.
if (n == 0) {
return std::nullopt;
}
// The "first root" is trivial.
if (n == 1) {
return x;
}
// We only support nontrivial roots of floating point types.
if (!std::is_floating_point<T>::value) {
return std::nullopt;
}
// Handle negative numbers: only odd roots are allowed.
if (x < 0) {
if (n % 2 == 0) {
return std::nullopt;
} else {
const auto negative_result = root(-x, n);
if (!negative_result.has_value()) {
return std::nullopt;
}
return static_cast<T>(-negative_result.value());
}
}
// Handle special cases of zero and one.
if (x == 0 || x == 1) {
return x;
}
// Handle numbers bewtween 0 and 1.
if (x < 1) {
const auto inverse_result = root(T{1} / x, n);
if (!inverse_result.has_value()) {
return std::nullopt;
}
return static_cast<T>(T{1} / inverse_result.value());
}
//
// At this point, error conditions are finished, and we can proceed with the "core" algorithm.
//
// Always use `long double` for intermediate computations. We don't ever expect people to be
// calling this at runtime, so we want maximum accuracy.
long double lo = 1.0;
long double hi = static_cast<long double>(x);
// Do a binary search to find the closest value such that `checked_int_pow` recovers the input.
//
// Because we know `n > 1`, and `x > 1`, and x^n is monotonically increasing, we know that
// `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`. We will preserve this as an
// invariant.
while (lo < hi) {
long double mid = lo + (hi - lo) / 2;
auto result = checked_int_pow(mid, n);
if (!result.has_value()) {
return std::nullopt;
}
// The "first root" is trivial.
if (n == 1) {
return x;
// Early return if we get lucky with an exact answer.
if (result.value() == x) {
return static_cast<T>(mid);
}
// We only support nontrivial roots of floating point types.
if (!std::is_floating_point<T>::value) {
return std::nullopt;
// Check for stagnation.
if (mid == lo || mid == hi) {
break;
}
// Handle negative numbers: only odd roots are allowed.
if (x < 0) {
if (n % 2 == 0) {
return std::nullopt;
} else {
const auto negative_result = root(-x, n);
if (!negative_result.has_value()) {
return std::nullopt;
}
return static_cast<T>(-negative_result.value());
}
// Preserve the invariant that `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`.
if (result.value() < x) {
lo = mid;
} else {
hi = mid;
}
}
// Handle special cases of zero and one.
if (x == 0 || x == 1) {
return x;
}
// Handle numbers bewtween 0 and 1.
if (x < 1) {
const auto inverse_result = root(T{1} / x, n);
if (!inverse_result.has_value()) {
return std::nullopt;
}
return static_cast<T>(T{1} / inverse_result.value());
}
//
// At this point, error conditions are finished, and we can proceed with the "core" algorithm.
//
// Always use `long double` for intermediate computations. We don't ever expect people to be
// calling this at runtime, so we want maximum accuracy.
long double lo = 1.0;
long double hi = static_cast<long double>(x);
// Do a binary search to find the closest value such that `checked_int_pow` recovers the input.
//
// Because we know `n > 1`, and `x > 1`, and x^n is monotonically increasing, we know that
// `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`. We will preserve this as an
// invariant.
while (lo < hi) {
long double mid = lo + (hi - lo) / 2;
auto result = checked_int_pow(mid, n);
if (!result.has_value()) {
return std::nullopt;
}
// Early return if we get lucky with an exact answer.
if (result.value() == x) {
return static_cast<T>(mid);
}
// Check for stagnation.
if (mid == lo || mid == hi) {
break;
}
// Preserve the invariant that `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`.
if (result.value() < x) {
lo = mid;
} else {
hi = mid;
}
}
// Pick whichever one gets closer to the target.
const auto lo_diff = x - checked_int_pow(lo, n).value();
const auto hi_diff = checked_int_pow(hi, n).value() - x;
return static_cast<T>(lo_diff < hi_diff ? lo : hi);
// Pick whichever one gets closer to the target.
const auto lo_diff = x - checked_int_pow(lo, n).value();
const auto hi_diff = checked_int_pow(hi, n).value() - x;
return static_cast<T>(lo_diff < hi_diff ? lo : hi);
}
template<typename T>
@ -444,13 +444,11 @@ template<typename T>
const auto final_result = (exp.den > 1) ? root(pow_result.value(), static_cast<uintmax_t>(exp.den)) : pow_result;
if (final_result.has_value()) {
return final_result.value();
} else {
std::abort(); // Root computation failed.
}
else {
std::abort(); // Root computation failed.
}
}
else {
std::abort(); // Power computation failed.
} else {
std::abort(); // Power computation failed.
}
}

View File

@ -53,8 +53,9 @@ using namespace mp_units::si::unit_symbols;
// quantity class invariants
//////////////////////////////
template <typename T>
constexpr bool within_4_ulps(T a, T b) {
template<typename T>
constexpr bool within_4_ulps(T a, T b)
{
static_assert(std::is_floating_point_v<T>);
auto walk_ulps = [](T x, int n) {
while (n > 0) {
@ -223,10 +224,8 @@ static_assert(within_4_ulps(sqrt((1.0 * m) * (1.0 * km)).numerical_value_in(m),
// Reproducing issue #494 exactly:
constexpr auto val_issue_494 = 8.0 * si::si2019::boltzmann_constant * 1000.0 * K / (std::numbers::pi * 10 * Da);
static_assert(
within_4_ulps(
sqrt(val_issue_494).numerical_value_in(m / s),
sqrt(val_issue_494.numerical_value_in(m * m / s / s))));
static_assert(within_4_ulps(sqrt(val_issue_494).numerical_value_in(m / s),
sqrt(val_issue_494.numerical_value_in(m* m / s / s))));
///////////////////////