mirror of
https://github.com/mpusz/mp-units.git
synced 2025-07-30 02:17:16 +02:00
Fix formatting
This commit is contained in:
@ -307,118 +307,118 @@ template<typename T>
|
||||
return checked_square(int_power(base, exp / 2));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
[[nodiscard]] consteval std::optional<T> checked_int_pow(T base, std::uintmax_t exp) {
|
||||
T result = T{1};
|
||||
while (exp > 0u) {
|
||||
if (exp % 2u == 1u) {
|
||||
if (base > std::numeric_limits<T>::max() / result) {
|
||||
return std::nullopt;
|
||||
}
|
||||
result *= base;
|
||||
}
|
||||
|
||||
exp /= 2u;
|
||||
|
||||
if (base > std::numeric_limits<T>::max() / base) {
|
||||
return (exp == 0u)
|
||||
? std::make_optional(result)
|
||||
: std::nullopt;
|
||||
}
|
||||
base *= base;
|
||||
template<typename T>
|
||||
[[nodiscard]] consteval std::optional<T> checked_int_pow(T base, std::uintmax_t exp)
|
||||
{
|
||||
T result = T{1};
|
||||
while (exp > 0u) {
|
||||
if (exp % 2u == 1u) {
|
||||
if (base > std::numeric_limits<T>::max() / result) {
|
||||
return std::nullopt;
|
||||
}
|
||||
result *= base;
|
||||
}
|
||||
return result;
|
||||
|
||||
exp /= 2u;
|
||||
|
||||
if (base > std::numeric_limits<T>::max() / base) {
|
||||
return (exp == 0u) ? std::make_optional(result) : std::nullopt;
|
||||
}
|
||||
base *= base;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
[[nodiscard]] consteval std::optional<T> root(T x, std::uintmax_t n) {
|
||||
// The "zeroth root" would be mathematically undefined.
|
||||
if (n == 0) {
|
||||
template<typename T>
|
||||
[[nodiscard]] consteval std::optional<T> root(T x, std::uintmax_t n)
|
||||
{
|
||||
// The "zeroth root" would be mathematically undefined.
|
||||
if (n == 0) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// The "first root" is trivial.
|
||||
if (n == 1) {
|
||||
return x;
|
||||
}
|
||||
|
||||
// We only support nontrivial roots of floating point types.
|
||||
if (!std::is_floating_point<T>::value) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Handle negative numbers: only odd roots are allowed.
|
||||
if (x < 0) {
|
||||
if (n % 2 == 0) {
|
||||
return std::nullopt;
|
||||
} else {
|
||||
const auto negative_result = root(-x, n);
|
||||
if (!negative_result.has_value()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
return static_cast<T>(-negative_result.value());
|
||||
}
|
||||
}
|
||||
|
||||
// Handle special cases of zero and one.
|
||||
if (x == 0 || x == 1) {
|
||||
return x;
|
||||
}
|
||||
|
||||
// Handle numbers bewtween 0 and 1.
|
||||
if (x < 1) {
|
||||
const auto inverse_result = root(T{1} / x, n);
|
||||
if (!inverse_result.has_value()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
return static_cast<T>(T{1} / inverse_result.value());
|
||||
}
|
||||
|
||||
//
|
||||
// At this point, error conditions are finished, and we can proceed with the "core" algorithm.
|
||||
//
|
||||
|
||||
// Always use `long double` for intermediate computations. We don't ever expect people to be
|
||||
// calling this at runtime, so we want maximum accuracy.
|
||||
long double lo = 1.0;
|
||||
long double hi = static_cast<long double>(x);
|
||||
|
||||
// Do a binary search to find the closest value such that `checked_int_pow` recovers the input.
|
||||
//
|
||||
// Because we know `n > 1`, and `x > 1`, and x^n is monotonically increasing, we know that
|
||||
// `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`. We will preserve this as an
|
||||
// invariant.
|
||||
while (lo < hi) {
|
||||
long double mid = lo + (hi - lo) / 2;
|
||||
|
||||
auto result = checked_int_pow(mid, n);
|
||||
|
||||
if (!result.has_value()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// The "first root" is trivial.
|
||||
if (n == 1) {
|
||||
return x;
|
||||
// Early return if we get lucky with an exact answer.
|
||||
if (result.value() == x) {
|
||||
return static_cast<T>(mid);
|
||||
}
|
||||
|
||||
// We only support nontrivial roots of floating point types.
|
||||
if (!std::is_floating_point<T>::value) {
|
||||
return std::nullopt;
|
||||
// Check for stagnation.
|
||||
if (mid == lo || mid == hi) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Handle negative numbers: only odd roots are allowed.
|
||||
if (x < 0) {
|
||||
if (n % 2 == 0) {
|
||||
return std::nullopt;
|
||||
} else {
|
||||
const auto negative_result = root(-x, n);
|
||||
if (!negative_result.has_value()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
return static_cast<T>(-negative_result.value());
|
||||
}
|
||||
// Preserve the invariant that `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`.
|
||||
if (result.value() < x) {
|
||||
lo = mid;
|
||||
} else {
|
||||
hi = mid;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle special cases of zero and one.
|
||||
if (x == 0 || x == 1) {
|
||||
return x;
|
||||
}
|
||||
|
||||
// Handle numbers bewtween 0 and 1.
|
||||
if (x < 1) {
|
||||
const auto inverse_result = root(T{1} / x, n);
|
||||
if (!inverse_result.has_value()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
return static_cast<T>(T{1} / inverse_result.value());
|
||||
}
|
||||
|
||||
//
|
||||
// At this point, error conditions are finished, and we can proceed with the "core" algorithm.
|
||||
//
|
||||
|
||||
// Always use `long double` for intermediate computations. We don't ever expect people to be
|
||||
// calling this at runtime, so we want maximum accuracy.
|
||||
long double lo = 1.0;
|
||||
long double hi = static_cast<long double>(x);
|
||||
|
||||
// Do a binary search to find the closest value such that `checked_int_pow` recovers the input.
|
||||
//
|
||||
// Because we know `n > 1`, and `x > 1`, and x^n is monotonically increasing, we know that
|
||||
// `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`. We will preserve this as an
|
||||
// invariant.
|
||||
while (lo < hi) {
|
||||
long double mid = lo + (hi - lo) / 2;
|
||||
|
||||
auto result = checked_int_pow(mid, n);
|
||||
|
||||
if (!result.has_value()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Early return if we get lucky with an exact answer.
|
||||
if (result.value() == x) {
|
||||
return static_cast<T>(mid);
|
||||
}
|
||||
|
||||
// Check for stagnation.
|
||||
if (mid == lo || mid == hi) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Preserve the invariant that `checked_int_pow(lo, n) < x < checked_int_pow(hi, n)`.
|
||||
if (result.value() < x) {
|
||||
lo = mid;
|
||||
} else {
|
||||
hi = mid;
|
||||
}
|
||||
}
|
||||
|
||||
// Pick whichever one gets closer to the target.
|
||||
const auto lo_diff = x - checked_int_pow(lo, n).value();
|
||||
const auto hi_diff = checked_int_pow(hi, n).value() - x;
|
||||
return static_cast<T>(lo_diff < hi_diff ? lo : hi);
|
||||
// Pick whichever one gets closer to the target.
|
||||
const auto lo_diff = x - checked_int_pow(lo, n).value();
|
||||
const auto hi_diff = checked_int_pow(hi, n).value() - x;
|
||||
return static_cast<T>(lo_diff < hi_diff ? lo : hi);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@ -444,13 +444,11 @@ template<typename T>
|
||||
const auto final_result = (exp.den > 1) ? root(pow_result.value(), static_cast<uintmax_t>(exp.den)) : pow_result;
|
||||
if (final_result.has_value()) {
|
||||
return final_result.value();
|
||||
} else {
|
||||
std::abort(); // Root computation failed.
|
||||
}
|
||||
else {
|
||||
std::abort(); // Root computation failed.
|
||||
}
|
||||
}
|
||||
else {
|
||||
std::abort(); // Power computation failed.
|
||||
} else {
|
||||
std::abort(); // Power computation failed.
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -53,8 +53,9 @@ using namespace mp_units::si::unit_symbols;
|
||||
// quantity class invariants
|
||||
//////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
constexpr bool within_4_ulps(T a, T b) {
|
||||
template<typename T>
|
||||
constexpr bool within_4_ulps(T a, T b)
|
||||
{
|
||||
static_assert(std::is_floating_point_v<T>);
|
||||
auto walk_ulps = [](T x, int n) {
|
||||
while (n > 0) {
|
||||
@ -223,10 +224,8 @@ static_assert(within_4_ulps(sqrt((1.0 * m) * (1.0 * km)).numerical_value_in(m),
|
||||
|
||||
// Reproducing issue #494 exactly:
|
||||
constexpr auto val_issue_494 = 8.0 * si::si2019::boltzmann_constant * 1000.0 * K / (std::numbers::pi * 10 * Da);
|
||||
static_assert(
|
||||
within_4_ulps(
|
||||
sqrt(val_issue_494).numerical_value_in(m / s),
|
||||
sqrt(val_issue_494.numerical_value_in(m * m / s / s))));
|
||||
static_assert(within_4_ulps(sqrt(val_issue_494).numerical_value_in(m / s),
|
||||
sqrt(val_issue_494.numerical_value_in(m* m / s / s))));
|
||||
|
||||
|
||||
///////////////////////
|
||||
|
Reference in New Issue
Block a user