mirror of
https://github.com/mpusz/mp-units.git
synced 2025-08-02 11:54:27 +02:00
refactor: initial CPOs for representation types and their usage in representation concepts
This commit is contained in:
@@ -105,6 +105,112 @@ constexpr bool is_vector = false;
|
||||
template<typename Rep>
|
||||
constexpr bool is_tensor = false;
|
||||
|
||||
MP_UNITS_EXPORT_END
|
||||
|
||||
namespace detail::inline norm_impl {
|
||||
|
||||
void norm() = delete; // poison pill
|
||||
|
||||
struct norm_t {
|
||||
template<typename T>
|
||||
[[nodiscard]] constexpr auto operator()(const T& vec) const
|
||||
{
|
||||
if constexpr (requires { vec.norm(); })
|
||||
return vec.norm();
|
||||
else if constexpr (requires { norm(vec); })
|
||||
return norm(vec);
|
||||
else if constexpr (requires { vec.magnitude(); })
|
||||
return vec.magnitude();
|
||||
else if constexpr (requires { magnitude(vec); })
|
||||
return magnitude(vec);
|
||||
// TODO Is it a good idea to enable fundamental types to represent vector quantities?
|
||||
// else if constexpr (is_scalar<T>)
|
||||
// return std::abs(vec);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail::inline norm_impl
|
||||
|
||||
inline namespace cpo {
|
||||
|
||||
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::norm_impl::norm_t norm;
|
||||
|
||||
}
|
||||
|
||||
namespace detail::inline real_impl {
|
||||
|
||||
void real() = delete; // poison pill
|
||||
|
||||
struct real_t {
|
||||
template<typename T>
|
||||
[[nodiscard]] constexpr auto operator()(const T& clx) const
|
||||
{
|
||||
if constexpr (requires { clx.real(); })
|
||||
return clx.real();
|
||||
else if constexpr (requires { real(clx); })
|
||||
return real(clx);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail::inline real_impl
|
||||
|
||||
inline namespace cpo {
|
||||
|
||||
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::real_impl::real_t real;
|
||||
|
||||
}
|
||||
|
||||
namespace detail::inline imag_impl {
|
||||
|
||||
void imag() = delete; // poison pill
|
||||
|
||||
struct imag_t {
|
||||
template<typename T>
|
||||
[[nodiscard]] constexpr auto operator()(const T& clx) const
|
||||
{
|
||||
if constexpr (requires { clx.imag(); })
|
||||
return clx.imag();
|
||||
else if constexpr (requires { imag(clx); })
|
||||
return imag(clx);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail::inline imag_impl
|
||||
|
||||
inline namespace cpo {
|
||||
|
||||
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::imag_impl::imag_t imag;
|
||||
|
||||
}
|
||||
|
||||
namespace detail::inline modulus_impl {
|
||||
|
||||
void modulus() = delete; // poison pill
|
||||
|
||||
struct modulus_t {
|
||||
template<typename T>
|
||||
[[nodiscard]] constexpr auto operator()(const T& clx) const
|
||||
{
|
||||
if constexpr (requires { clx.modulus(); })
|
||||
return clx.modulus();
|
||||
else if constexpr (requires { modulus(clx); })
|
||||
return modulus(clx);
|
||||
// `std` made a precedence of using `abs` for modulo on `std::complex`
|
||||
else if constexpr (requires { abs(clx); })
|
||||
return abs(clx);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail::inline modulus_impl
|
||||
|
||||
inline namespace cpo {
|
||||
|
||||
MP_UNITS_EXPORT inline constexpr ::mp_units::detail::modulus_impl::modulus_t modulus;
|
||||
|
||||
}
|
||||
|
||||
MP_UNITS_EXPORT_BEGIN
|
||||
|
||||
/**
|
||||
* @brief A type trait that defines zero, one, min, and max for a representation type
|
||||
*
|
||||
|
@@ -118,11 +118,9 @@ concept ComplexRepresentation = Complex<T> && WeaklyRegular<T> && requires(T a,
|
||||
{ a - b } -> Complex;
|
||||
{ a* b } -> Complex;
|
||||
{ a / b } -> Complex;
|
||||
{ real(a) } -> Scalar;
|
||||
{ imag(a) } -> Scalar;
|
||||
{ abs(a) } -> Scalar;
|
||||
{ arg(a) } -> Scalar;
|
||||
{ conj(a) } -> Complex;
|
||||
{ ::mp_units::real(a) } -> Scalar;
|
||||
{ ::mp_units::imag(a) } -> Scalar;
|
||||
{ ::mp_units::modulus(a) } -> Scalar;
|
||||
};
|
||||
|
||||
// TODO how to check for a complex(Scalar, Scalar) -> Complex?
|
||||
@@ -138,8 +136,8 @@ concept VectorRepresentation = Vector<T> && WeaklyRegular<T> && requires(T a, T
|
||||
{ -a } -> Vector;
|
||||
{ a + b } -> Vector;
|
||||
{ a - b } -> Vector;
|
||||
{ ::mp_units::norm(a) } -> Scalar;
|
||||
// TBD
|
||||
// { norm(a) } -> Scalar;
|
||||
// { zero_vector<T>() } -> Vector;
|
||||
// { unit_vector(a) } -> Vector;
|
||||
// { scalar_product(a, b) } -> Scalar;
|
||||
|
Reference in New Issue
Block a user