Compare commits

..

85 Commits

Author SHA1 Message Date
280f150bfb optional_optimization branch
[SVN r77091]
2012-02-22 10:37:27 +00:00
dfaea65083 Fix (even more) test failures in Boost.Algorithm
[SVN r77076]
2012-02-20 15:22:04 +00:00
eb8291e0aa Fix some test (more) failures in Boost.Algorithm
[SVN r77073]
2012-02-19 16:17:27 +00:00
f023127c99 Fix some test failures in Boost.Algorithm
[SVN r77070]
2012-02-18 17:26:08 +00:00
43c01ff2bc Added c++11 algorithms to Boost.Algorithm
[SVN r77060]
2012-02-18 07:17:39 +00:00
8bfaa6dad3 Added QuickRef entries for 'is_any_of' and 'is_from_range'
[SVN r76526]
2012-01-15 16:47:48 +00:00
6fbc7401d5 should correct #3634; will close when merged to release
[SVN r76435]
2012-01-12 18:35:06 +00:00
d518994247 Initial checkin of Boost.Algorithm searching and clamp code and tests; docs and more Algos coming
[SVN r76388]
2012-01-09 17:21:04 +00:00
ba417e875a Qualified two calls to memcpy to work around a C++Builder bug; Refs #4811
[SVN r76213]
2011-12-28 19:14:18 +00:00
e92d471817 Comment updated
[SVN r72350]
2011-06-02 20:08:16 +00:00
34c49f856c trim_fill algorithm added
[SVN r72338]
2011-06-01 22:00:22 +00:00
caea7bd125 trim_all test fixed
[SVN r68173]
2011-01-15 18:37:46 +00:00
81b04cde96 Revert [67111] (addition of boost/detail/iomanip.hpp) and all the commits that depend on it. ([68137], [68140], [68141], [68154], and [68165]).
[SVN r68168]
2011-01-15 08:11:51 +00:00
276073ca64 tabs removed
[SVN r68162]
2011-01-14 23:12:32 +00:00
a7f5bdd781 trim_all algorithm added
[SVN r68161]
2011-01-14 23:06:14 +00:00
0c0a866f07 Replacing the use of <iomanip> with <boost/detail/iomanip.hpp> across Boost.
On Linux, GNU's libstdc++, which is the default stdlib for icc and clang,
cannot parse the <iomanip> header in version 4.5+ (which thankfully neither
compiler advises the use of yet), as it's original C++98-friendly
implementation has been replaced with a gnu++0x implementation.
<boost/detail/iomanip.hpp> is a portable implementation of <iomanip>, providing
boost::detail::setfill, boost::detail::setbase, boost::detail::setw,
boost::detail::setprecision, boost::detail::setiosflags and
boost::detail::resetiosflags. 



[SVN r68140]
2011-01-14 02:35:58 +00:00
9d25072f2f dissect formatter and tests added
[SVN r68124]
2011-01-13 21:21:37 +00:00
823b199df3 Fix typo. Fixes #4937.
[SVN r67106]
2010-12-08 17:37:52 +00:00
fecd440527 Fix some links I missed in string algorithms
[SVN r66278]
2010-10-30 15:53:41 +00:00
3325d3a3f8 Link fixes.
[SVN r66273]
2010-10-30 14:32:50 +00:00
ebf104c127 test for empty string split added
[SVN r66221]
2010-10-27 20:42:22 +00:00
3b76763807 fixed the empty string handling for the split iterator
[SVN r66220]
2010-10-27 20:40:37 +00:00
62df1eb048 Fix #4551,#4553,#4575 by removing unused parameter.
[SVN r65004]
2010-08-25 20:01:38 +00:00
f5dd47883f Update various libraries' documentation build.
Mostly to use the images and css files under doc/src instead of
doc/html, usually be deleting the settings in order to use the defaults.
Also add 'boost.root' to some builds in order to fix links which rely on
it.

[SVN r63146]
2010-06-20 18:00:48 +00:00
9d68c4280c Fix license per inspection report.
[SVN r62814]
2010-06-11 19:52:26 +00:00
1e8b3ee752 Make to_upperF and to_lowerF assignable. Fixes #3161.
[SVN r62697]
2010-06-09 23:23:56 +00:00
42147c8385 Copy m_bEof in the split_iterator copy constructor. Fixes #4271
[SVN r62696]
2010-06-09 23:12:56 +00:00
672775545d Avoid calling the formatter with an invalid match. Fixes #2777
[SVN r62695]
2010-06-09 23:04:24 +00:00
46ed1bf987 Assign the iterator returned by std::copy back to Output, so that string algorithms will work with iterators other than inserters
[SVN r62694]
2010-06-09 21:12:06 +00:00
6289ed7f98 Trim the correct string. Fixes #3860
[SVN r62692]
2010-06-09 20:42:46 +00:00
8e97668b1f Tail not head. Fixes #3314
[SVN r62690]
2010-06-09 20:31:26 +00:00
e7c23d2f13 Tail not head. Fixes #2124
[SVN r62689]
2010-06-09 20:26:36 +00:00
a1e7512012 Use result_type instead of sig for predicates. Fixes #2868
[SVN r62688]
2010-06-09 20:16:21 +00:00
31b5842441 Typo.
[SVN r62461]
2010-06-06 07:18:24 +00:00
4515bc182e Fix example. Fixes #4206
[SVN r61931]
2010-05-12 12:56:16 +00:00
7e2e6856cc Remove duplicate closing angle brackets. Fixes #4198
[SVN r61856]
2010-05-08 18:27:44 +00:00
235c81be61 Fixed various issues in docs (mostly duplicate bookmarks and broken links) found by inspect tool
[SVN r61437]
2010-04-20 18:49:18 +00:00
1eb3d83534 Fix links for string algorithm to range documentation.
[SVN r61351]
2010-04-18 12:17:36 +00:00
8f2b8d4888 rm cmake from trunk. I'm not entirely sure this is necessary to satisfy the inspect script, but I'm not taking any chances, and it is easy to put back
[SVN r56942]
2009-10-17 02:07:38 +00:00
6c0f953c01 GCC compilation errors caused be the recent update fixed
[SVN r55434]
2009-08-06 19:52:08 +00:00
e439792494 Merged ADL protection patch from Neil Groves
[SVN r55424]
2009-08-05 20:01:10 +00:00
236b142308 Copyrights on CMakeLists.txt to keep them from clogging up the inspect
reports.  This is essentially the same commit as r55095 on the release
branch.



[SVN r55159]
2009-07-26 00:49:56 +00:00
9bad789175 Fix operator precedence error in documentation. Fixes #2122
[SVN r53520]
2009-06-01 00:47:03 +00:00
d84f81d841 Fixed most tab and min/max issues from trunk inspection report
[SVN r53141]
2009-05-20 19:19:00 +00:00
ce98e8b87e Qualify minmax with boost:: to avoid ambiguity with std::minmax. Fixes #3023
[SVN r53062]
2009-05-17 00:39:22 +00:00
e8a2596637 Add PDF generation options to fix external links to point to the web site.
Added a few more Boostbook based libs that were missed first time around.
Fixed PDF naming issues.

[SVN r51284]
2009-02-17 10:05:58 +00:00
7b2754b937 Fix copy/paste error in minmax docs. Fixes #2500
[SVN r51045]
2009-02-06 03:45:09 +00:00
784402e5c0 Updating dependency information for modularized libraries.
[SVN r49628]
2008-11-07 17:05:27 +00:00
1188575e7b Updating CMake files to latest trunk. Added dependency information for regression tests and a few new macros for internal use.
[SVN r49627]
2008-11-07 17:02:56 +00:00
bff2a1e112 Continuing merge of CMake build system files into trunk with the encouragement of Doug Gregor
[SVN r49510]
2008-11-01 13:15:41 +00:00
6d5e7b5a04 self assignment problem in is_any_ofF fixed
[SVN r48281]
2008-08-21 14:46:15 +00:00
760af1798b removed static constant FIXED_STORAGE_SIZE from is_any_of to
make the code compile on borland compilers



[SVN r48218]
2008-08-19 14:32:59 +00:00
1f5542b44c predicate test improvements
[SVN r48199]
2008-08-18 18:33:40 +00:00
baf3dd99e2 fox for allocation bug in is_any_ofF
[SVN r48198]
2008-08-18 18:32:51 +00:00
7299b29bf8 fixind the problems in is_any_ofF spotted by gcc
[SVN r46498]
2008-06-18 22:07:32 +00:00
539c170b9d aditional tests added
[SVN r46497]
2008-06-18 21:55:38 +00:00
c81ee948b7 is_any_ofF performance improvements
tabs removed



[SVN r46496]
2008-06-18 21:54:06 +00:00
ba5e4c30c6 fixed the rle example crash
[SVN r46463]
2008-06-17 21:58:58 +00:00
cd26ed816c patch from ticket #1152 applied
[SVN r46461]
2008-06-17 21:21:33 +00:00
4e15767bed simple_finder example fixed
[SVN r46460]
2008-06-17 21:13:25 +00:00
9fa2f90db4 begin() and end() calls made fully qualified
[SVN r46459]
2008-06-17 21:04:00 +00:00
35f317aeac unnecessary typedefs removed
[SVN r46458]
2008-06-17 20:31:41 +00:00
d0a03fdb4e Added missing include. This was already fixed on the 1.34 branch but never merged to the trunk.
[SVN r45857]
2008-05-28 08:32:12 +00:00
346f032be2 Quote href values - our tools don't support unquoted values.
[SVN r45283]
2008-05-11 13:49:20 +00:00
a389d768c4 Fix broken copyright urls. Fixes #1573.
[SVN r43422]
2008-02-27 18:51:14 +00:00
90fca39906 Point links to the pages that used to be in 'more' to the site.
[SVN r43210]
2008-02-10 15:02:17 +00:00
5b24f31486 merging changes from 1.34
[SVN r40698]
2007-11-02 21:00:08 +00:00
b25d6511b3 merging changes from 1.34
[SVN r40697]
2007-11-02 20:55:26 +00:00
1541a554f5 changed range_result_iterator to range_iterator
[SVN r40518]
2007-10-27 22:52:29 +00:00
7a97b3390e Added missing include.
[SVN r39586]
2007-09-28 07:19:29 +00:00
6e5a7497ae Added missing include.
[SVN r39519]
2007-09-25 08:46:31 +00:00
f0b8b60379 Update
[SVN r38522]
2007-08-08 19:24:04 +00:00
66019abb2f Update
[SVN r38521]
2007-08-08 19:23:38 +00:00
8758222006 Remove V1 Jamfiles
[SVN r38516]
2007-08-08 19:02:26 +00:00
4eef56761a find/split iterator tests added
[SVN r38126]
2007-07-01 22:24:29 +00:00
b94a3fbfba adapting to new range interface
[SVN r38125]
2007-07-01 22:23:55 +00:00
614cc2ebab adapting to new range interface
[SVN r38123]
2007-07-01 13:29:56 +00:00
869660ed14 adapted to the new range interface
[SVN r38122]
2007-07-01 13:12:57 +00:00
777f30780e Fix broken build of docs, it was missing a dependency to the doxygen docs.
[SVN r37466]
2007-04-17 17:19:25 +00:00
26aa37733b Fix a few more references to *.boosbook instead of *.xml generated files.
[SVN r37465]
2007-04-17 17:13:35 +00:00
f1e60579c2 documentation typo fixed
[SVN r36843]
2007-01-30 07:59:28 +00:00
389dd3c863 Add copyright, license
[SVN r35905]
2006-11-07 19:11:57 +00:00
f23f61ae9b License added to the xml doc files
[SVN r34895]
2006-08-16 07:17:49 +00:00
608112b112 boost guidelines (mainly from inspect tool: tabs, license reference text, etc.)
[SVN r34752]
2006-07-27 10:27:37 +00:00
b21b54dc4e Applying patch from Nicola Musatti
[SVN r33709]
2006-04-16 09:46:34 +00:00
54 changed files with 199 additions and 2558 deletions

View File

@ -1,42 +0,0 @@
# Boost.Algorithm
#
# Copyright (c) 2010-2012 Marshall Clow
#
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
# Quickbook
# -----------------------------------------------------------------------------
import os ;
using quickbook ;
using doxygen ;
using boostbook ;
doxygen autodoc
:
[ glob ../../../boost/algorithm/*.hpp ../../../boost/algorithm/searching/*.hpp ]
:
<doxygen:param>"PREDEFINED=\"BOOST_ALGORITHM_DOXYGEN=1\""
<doxygen:param>WARNINGS=YES # Default NO, but useful to see warnings, especially in a logfile.
;
xml algorithm : algorithm.qbk ;
boostbook standalone
:
algorithm
:
<dependency>autodoc
<xsl:param>boost.root=../../../..
<xsl:param>"boost.doxygen.reftitle=Boost.Algorithms C++ Reference"
<xsl:param>chapter.autolabel=0
<xsl:param>chunk.section.depth=8
<xsl:param>toc.section.depth=2
<xsl:param>toc.max.depth=2
<xsl:param>generate.section.toc.level=1
;

View File

@ -1,68 +0,0 @@
[library The Boost Algorithm Library
[quickbook 1.5]
[id algorithm]
[dirname algorithm]
[purpose Library of useful algorithms]
[category algorithms]
[authors [Clow, Marshall]]
[copyright 2010-2012 Marshall Clow]
[source-mode c++]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
]
[section Description and Rationale]
Boost.Algorithm is a collection of general purpose algorithms. While Boost contains many libraries of data structures, there is no single library for general purpose algorithms. Even though the algorithms are generally useful, many tend to be thought of as "too small" for Boost.
An implementation of Boyer-Moore searching, for example, might take a developer a week or so to implement, including test cases and documentation. However, scheduling a review to include that code into Boost might take several months, and run into resistance because "it is too small". Nevertheless, a library of tested, reviewed, documented algorithms can make the developer's life much easier, and that is the purpose of this library.
[heading Future plans]
I will be soliciting submissions from other developers, as well as looking through the literature for existing algorithms to include. The Adobe Source Library, for example, contains many useful algorithms that already have documentation and test cases. Knuth's _The Art of Computer Programming_ is chock-full of algorithm descriptions, too.
My goal is to run regular algorithm reviews, similar to the Boost library review process, but with smaller chunks of code.
[heading Dependencies]
Boost.Algorithm uses Boost.Range, Boost.Assert, Boost.Array, Boost.TypeTraits, and Boost.StaticAssert.
[heading Acknowledgements]
Thanks to all the people who have reviewed this library and made suggestions for improvements. Steven Watanabe and Sean Parent, in particular, have provided a great deal of help.
[endsect]
[/ include toc.qbk]
[section:Searching Searching Algorithms]
[include boyer_moore.qbk]
[include boyer_moore_horspool.qbk]
[include knuth_morris_pratt.qbk]
[endsect]
[section:CXX11 C++11 Algorithms]
[include all_of.qbk]
[include any_of.qbk]
[include none_of.qbk]
[include one_of.qbk]
[include ordered-hpp.qbk]
[include is_partitioned.qbk]
[include partition_point.qbk]
[endsect]
[section:Misc Other Algorithms]
[include clamp-hpp.qbk]
[include hex.qbk]
[endsect]
[xinclude autodoc.xml]

View File

@ -1,89 +0,0 @@
[/ File all_of.qbk]
[section:all_of all_of]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
The header file 'boost/algorithm/cxx11/all_of.hpp' contains four variants of a single algorithm, `all_of`. The algorithm tests all the elements of a sequence and returns true if they all share a property.
The routine `all_of` takes a sequence and a predicate. It will return true if the predicate returns true when applied to every element in the sequence.
The routine `all_of_equal` takes a sequence and a value. It will return true if every element in the sequence compares equal to the passed in value.
Both routines come in two forms; the first one takes two iterators to define the range. The second form takes a single range parameter, and uses Boost.Range to traverse it.
[heading interface]
The function `all_of` returns true if the predicate returns true for every item in the sequence. There are two versions; one takes two iterators, and the other takes a range.
``
namespace boost { namespace algorithm {
template<typename InputIterator, typename Predicate>
bool all_of ( InputIterator first, InputIterator last, Predicate p );
template<typename Range, typename Predicate>
bool all_of ( const Range &r, Predicate p );
}}
``
The function `all_of_equal` is similar to `all_of`, but instead of taking a predicate to test the elements of the sequence, it takes a value to compare against.
``
namespace boost { namespace algorithm {
template<typename InputIterator, typename V>
bool all_of_equal ( InputIterator first, InputIterator last, V const &val );
template<typename Range, typename V>
bool all_of_equal ( const Range &r, V const &val );
}}
``
[heading Examples]
Given the container `c` containing `{ 0, 1, 2, 3, 14, 15 }`, then
``
bool isOdd ( int i ) { return i % 2 == 1; }
bool lessThan10 ( int i ) { return i < 10; }
using boost::algorithm;
all_of ( c, isOdd ) --> false
all_of ( c.begin (), c.end (), lessThan10 ) --> false
all_of ( c.begin (), c.begin () + 3, lessThan10 ) --> true
all_of ( c.end (), c.end (), isOdd ) --> true // empty range
all_of_equal ( c, 3 ) --> false
all_of_equal ( c.begin () + 3, c.begin () + 4, 3 ) --> true
all_of_equal ( c.begin (), c.begin (), 99 ) --> true // empty range
``
[heading Iterator Requirements]
`all_of` and `all_of_equal` work on all iterators except output iterators.
[heading Complexity]
All of the variants of `all_of` and `all_of_equal` run in ['O(N)] (linear) time; that is, they compare against each element in the list once. If any of the comparisons fail, the algorithm will terminate immediately, without examining the remaining members of the sequence.
[heading Exception Safety]
All of the variants of `all_of` and `all_of_equal` take their parameters by value or const reference, and do not depend upon any global state. Therefore, all the routines in this file provide the strong exception guarantee.
[heading Notes]
* The routine `all_of` is part of the C++11 standard. When compiled using a C++11 implementation, the implementation from the standard library will be used.
* `all_of` and `all_of_equal` both return true for empty ranges, no matter what is passed to test against. When there are no items in the sequence to test, they all satisfy the condition to be tested against.
* The second parameter to `all_of_value` is a template parameter, rather than deduced from the first parameter (`std::iterator_traits<InputIterator>::value_type`) because that allows more flexibility for callers, and takes advantage of built-in comparisons for the type that is pointed to by the iterator. The function is defined to return true if, for all elements in the sequence, the expression `*iter == val` evaluates to true (where `iter` is an iterator to each element in the sequence)
[endsect]
[/ File all_of.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,89 +0,0 @@
[/ File any_of.qbk]
[section:any_of any_of]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
The header file 'boost/algorithm/cxx11/any_of.hpp' contains four variants of a single algorithm, `any_of`. The algorithm tests the elements of a sequence and returns true if any of the elements has a particular property.
The routine `any_of` takes a sequence and a predicate. It will return true if the predicate returns true for any element in the sequence.
The routine `any_of_equal` takes a sequence and a value. It will return true if any element in the sequence compares equal to the passed in value.
Both routines come in two forms; the first one takes two iterators to define the range. The second form takes a single range parameter, and uses Boost.Range to traverse it.
[heading interface]
The function `any_of` returns true if the predicate returns true any item in the sequence. There are two versions; one takes two iterators, and the other takes a range.
``
namespace boost { namespace algorithm {
template<typename InputIterator, typename Predicate>
bool any_of ( InputIterator first, InputIterator last, Predicate p );
template<typename Range, typename Predicate>
bool any_of ( const Range &r, Predicate p );
}}
``
The function `any_of_equal` is similar to `any_of`, but instead of taking a predicate to test the elements of the sequence, it takes a value to compare against.
``
namespace boost { namespace algorithm {
template<typename InputIterator, typename V>
bool any_of_equal ( InputIterator first, InputIterator last, V const &val );
template<typename Range, typename V>
bool any_of_equal ( const Range &r, V const &val );
}}
``
[heading Examples]
Given the container `c` containing `{ 0, 1, 2, 3, 14, 15 }`, then
``
bool isOdd ( int i ) { return i % 2 == 1; }
bool lessThan10 ( int i ) { return i < 10; }
using boost::algorithm;
any_of ( c, isOdd ) --> true
any_of ( c.begin (), c.end (), lessThan10 ) --> true
any_of ( c.begin () + 4, c.end (), lessThan10 ) --> false
any_of ( c.end (), c.end (), isOdd ) --> false // empty range
any_of_equal ( c, 3 ) --> true
any_of_equal ( c.begin (), c.begin () + 3, 3 ) --> false
any_of_equal ( c.begin (), c.begin (), 99 ) --> false // empty range
``
[heading Iterator Requirements]
`any_of` and `any_of_equal` work on all iterators except output iterators.
[heading Complexity]
All of the variants of `any_of` and `any_of_equal` run in ['O(N)] (linear) time; that is, they compare against each element in the list once. If any of the comparisons succeed, the algorithm will terminate immediately, without examining the remaining members of the sequence.
[heading Exception Safety]
All of the variants of `any_of` and `any_of_equal` take their parameters by value or const reference, and do not depend upon any global state. Therefore, all the routines in this file provide the strong exception guarantee.
[heading Notes]
* The routine `any_of` is part of the C++11 standard. When compiled using a C++11 implementation, the implementation from the standard library will be used.
* `any_of` and `any_of_equal` both return false for empty ranges, no matter what is passed to test against.
* The second parameter to `any_of_value` is a template parameter, rather than deduced from the first parameter (`std::iterator_traits<InputIterator>::value_type`) because that allows more flexibility for callers, and takes advantage of built-in comparisons for the type that is pointed to by the iterator. The function is defined to return true if, for any element in the sequence, the expression `*iter == val` evaluates to true (where `iter` is an iterator to each element in the sequence)
[endsect]
[/ File any_of.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,95 +0,0 @@
[/ QuickBook Document version 1.5 ]
[section:BoyerMoore Boyer-Moore Search]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[heading Overview]
The header file 'boyer_moore.hpp' contains an an implementation of the Boyer-Moore algorithm for searching sequences of values.
The BoyerMoore string search algorithm is a particularly efficient string searching algorithm, and it has been the standard benchmark for the practical string search literature. The Boyer-Moore algorithm was invented by Bob Boyer and J. Strother Moore, and published in the October 1977 issue of the Communications of the ACM , and a copy of that article is available at [@http://www.cs.utexas.edu/~moore/publications/fstrpos.pdf].
The Boyer-Moore algorithm uses two precomputed tables to give better performance than a naive search. These tables depend on the pattern being searched for, and give the Boyer-Moore algorithm larger a memory footprint and startup costs than a simpler algorithm, but these costs are recovered quickly during the searching process, especially if the pattern is longer than a few elements.
However, the Boyer-Moore algorithm cannot be used with comparison predicates like `std::search`.
Nomenclature: I refer to the sequence being searched for as the "pattern", and the sequence being searched in as the "corpus".
[heading Interface]
For flexibility, the Boyer-Moore algorithm has has two interfaces; an object-based interface and a procedural one. The object-based interface builds the tables in the constructor, and uses operator () to perform the search. The procedural interface builds the table and does the search all in one step. If you are going to be searching for the same pattern in multiple corpora, then you should use the object interface, and only build the tables once.
Here is the object interface:
``
template <typename patIter>
class boyer_moore {
public:
boyer_moore ( patIter first, patIter last );
~boyer_moore ();
template <typename corpusIter>
corpusIter operator () ( corpusIter corpus_first, corpusIter corpus_last );
};
``
and here is the corresponding procedural interface:
``
template <typename patIter, typename corpusIter>
corpusIter boyer_moore_search (
corpusIter corpus_first, corpusIter corpus_last,
patIter pat_first, patIter pat_last );
``
Each of the functions is passed two pairs of iterators. The first two define the corpus and the second two define the pattern. Note that the two pairs need not be of the same type, but they do need to "point" at the same type. In other words, `patIter::value_type` and `curpusIter::value_type` need to be the same type.
The return value of the function is an iterator pointing to the start of the pattern in the corpus. If the pattern is not found, it returns the end of the corpus (`corpus_last`).
[heading Performance]
The execution time of the Boyer-Moore algorithm, while still linear in the size of the string being searched, can have a significantly lower constant factor than many other search algorithms: it doesn't need to check every character of the string to be searched, but rather skips over some of them. Generally the algorithm gets faster as the pattern being searched for becomes longer. Its efficiency derives from the fact that with each unsuccessful attempt to find a match between the search string and the text it is searching, it uses the information gained from that attempt to rule out as many positions of the text as possible where the string cannot match.
[heading Memory Use]
The algorithm allocates two internal tables. The first one is proportional to the length of the pattern; the second one has one entry for each member of the "alphabet" in the pattern. For (8-bit) character types, this table contains 256 entries.
[heading Complexity]
The worst-case performance to find a pattern in the corpus is ['O(N)] (linear) time; that is, proportional to the length of the corpus being searched. In general, the search is sub-linear; not every entry in the corpus need be checked.
[heading Exception Safety]
Both the object-oriented and procedural versions of the Boyer-Moore algorithm take their parameters by value and do not use any information other than what is passed in. Therefore, both interfaces provide the strong exception guarantee.
[heading Notes]
* When using the object-based interface, the pattern must remain unchanged for during the searches; i.e, from the time the object is constructed until the final call to operator () returns.
* The Boyer-Moore algorithm requires random-access iterators for both the pattern and the corpus.
[heading Customization points]
The Boyer-Moore object takes a traits template parameter which enables the caller to customize how one of the precomputed tables is stored. This table, called the skip table, contains (logically) one entry for every possible value that the pattern can contain. When searching 8-bit character data, this table contains 256 elements. The traits class defines the table to be used.
The default traits class uses a `boost::array` for small 'alphabets' and a `tr1::unordered_map` for larger ones. The array-based skip table gives excellent performance, but could be prohibitively large when the 'alphabet' of elements to be searched grows. The unordered_map based version only grows as the number of unique elements in the pattern, but makes many more heap allocations, and gives slower lookup performance.
To use a different skip table, you should define your own skip table object and your own traits class, and use them to instantiate the Boyer-Moore object. The interface to these objects is described TBD.
[endsect]
[/ File boyer_moore.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,93 +0,0 @@
[/ QuickBook Document version 1.5 ]
[section:BoyerMooreHorspool Boyer-Moore-Horspool Search]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[heading Overview]
The header file 'boyer_moore_horspool.hpp' contains an an implementation of the Boyer-Moore-Horspool algorithm for searching sequences of values.
The Boyer-Moore-Horspool search algorithm was published by Nigel Horspool in 1980. It is a refinement of the Boyer-Moore algorithm that trades space for time. It uses less space for internal tables than Boyer-Moore, and has poorer worst-case performance.
The Boyer-Moore-Horspool algorithm cannot be used with comparison predicates like `std::search`.
[heading Interface]
Nomenclature: I refer to the sequence being searched for as the "pattern", and the sequence being searched in as the "corpus".
For flexibility, the Boyer-Moore-Horspool algorithm has has two interfaces; an object-based interface and a procedural one. The object-based interface builds the tables in the constructor, and uses operator () to perform the search. The procedural interface builds the table and does the search all in one step. If you are going to be searching for the same pattern in multiple corpora, then you should use the object interface, and only build the tables once.
Here is the object interface:
``
template <typename patIter>
class boyer_moore_horspool {
public:
boyer_moore_horspool ( patIter first, patIter last );
~boyer_moore_horspool ();
template <typename corpusIter>
corpusIter operator () ( corpusIter corpus_first, corpusIter corpus_last );
};
``
and here is the corresponding procedural interface:
``
template <typename patIter, typename corpusIter>
corpusIter boyer_moore_horspool_search (
corpusIter corpus_first, corpusIter corpus_last,
patIter pat_first, patIter pat_last );
``
Each of the functions is passed two pairs of iterators. The first two define the corpus and the second two define the pattern. Note that the two pairs need not be of the same type, but they do need to "point" at the same type. In other words, `patIter::value_type` and `curpusIter::value_type` need to be the same type.
The return value of the function is an iterator pointing to the start of the pattern in the corpus. If the pattern is not found, it returns the end of the corpus (`corpus_last`).
[heading Performance]
The execution time of the Boyer-Moore-Horspool algorithm is linear in the size of the string being searched; it can have a significantly lower constant factor than many other search algorithms: it doesn't need to check every character of the string to be searched, but rather skips over some of them. Generally the algorithm gets faster as the pattern being searched for becomes longer. Its efficiency derives from the fact that with each unsuccessful attempt to find a match between the search string and the text it is searching, it uses the information gained from that attempt to rule out as many positions of the text as possible where the string cannot match.
[heading Memory Use]
The algorithm an internal table that has one entry for each member of the "alphabet" in the pattern. For (8-bit) character types, this table contains 256 entries.
[heading Complexity]
The worst-case performance is ['O(m x n)], where ['m] is the length of the pattern and ['n] is the length of the corpus. The average time is ['O(n)]. The best case performance is sub-linear, and is, in fact, identical to Boyer-Moore, but the initialization is quicker and the internal loop is simpler than Boyer-Moore.
[heading Exception Safety]
Both the object-oriented and procedural versions of the Boyer-Moore-Horspool algorithm take their parameters by value and do not use any information other than what is passed in. Therefore, both interfaces provide the strong exception guarantee.
[heading Notes]
* When using the object-based interface, the pattern must remain unchanged for during the searches; i.e, from the time the object is constructed until the final call to operator () returns.
* The Boyer-Moore-Horspool algorithm requires random-access iterators for both the pattern and the corpus.
[heading Customization points]
The Boyer-Moore-Horspool object takes a traits template parameter which enables the caller to customize how the precomputed table is stored. This table, called the skip table, contains (logically) one entry for every possible value that the pattern can contain. When searching 8-bit character data, this table contains 256 elements. The traits class defines the table to be used.
The default traits class uses a `boost::array` for small 'alphabets' and a `tr1::unordered_map` for larger ones. The array-based skip table gives excellent performance, but could be prohibitively large when the 'alphabet' of elements to be searched grows. The unordered_map based version only grows as the number of unique elements in the pattern, but makes many more heap allocations, and gives slower lookup performance.
To use a different skip table, you should define your own skip table object and your own traits class, and use them to instantiate the Boyer-Moore-Horspool object. The interface to these objects is described TBD.
[endsect]
[/ File boyer_moore_horspool.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,73 +0,0 @@
[/ QuickBook Document version 1.5 ]
[section:clamp clamp]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
The header file clamp.hpp contains two functions for "clamping" a value between a pair of boundary values.
[heading clamp]
The function `clamp (v, lo, hi)` returns:
* lo if v < lo
* hi if hi < v
* otherwise, v
Note: using `clamp` with floating point numbers may give unexpected results if one of the values is `NaN`.
There is also a version that allows the caller to specify a comparison predicate to use instead of `operator <`.
``
template<typename V>
V clamp ( V val, V lo, V hi );
template<typename V, typename Pred>
V clamp ( V val, V lo, V hi, Pred p );
``
The following code: ``
int foo = 23;
foo = clamp ( foo, 1, 10 );
``
will leave `foo` with a value of 10
Complexity:
`clamp` will make either one or two calls to the comparison predicate before returning one of the three parameters.
[heading clamp_range]
There are also four range-based versions of clamp, that apply clamping to a series of values. You could write them yourself with std::transform and bind, like this: `std::transform ( first, last, out, bind ( clamp ( _1, lo, hi )))`, but they are provided here for your convenience.
``
template<typename InputIterator, typename OutputIterator>
OutputIterator clamp_range ( InputIterator first, InputIterator last, OutputIterator out,
typename std::iterator_traits<InputIterator>::value_type lo,
typename std::iterator_traits<InputIterator>::value_type hi );
template<typename Range, typename OutputIterator>
OutputIterator clamp_range ( const Range &r, OutputIterator out,
typename std::iterator_traits<typename boost::range_iterator<const Range>::type>::value_type lo,
typename std::iterator_traits<typename boost::range_iterator<const Range>::type>::value_type hi );
template<typename InputIterator, typename OutputIterator, typename Pred>
OutputIterator clamp_range ( InputIterator first, InputIterator last, OutputIterator out,
typename std::iterator_traits<InputIterator>::value_type lo,
typename std::iterator_traits<InputIterator>::value_type hi, Pred p );
template<typename Range, typename OutputIterator, typename Pred>
OutputIterator clamp_range ( const Range &r, OutputIterator out,
typename std::iterator_traits<typename boost::range_iterator<const Range>::type>::value_type lo,
typename std::iterator_traits<typename boost::range_iterator<const Range>::type>::value_type hi,
Pred p );
``
[endsect]

View File

@ -1,109 +0,0 @@
[/ File hex.qbk]
[section:hex hex]
[/license
Copyright (c) 2011-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
The header file `'boost/algorithm/hex.hpp'` contains three variants each of two algorithms, `hex` and `unhex`. They are inverse algorithms; that is, one undoes the effort of the other. `hex` takes a sequence of values, and turns them into hexadecimal characters. `unhex` takes a sequence of hexadecimal characters, and outputs a sequence of values.
`hex` and `unhex` come from MySQL, where they are used in database queries and stored procedures.
[heading interface]
The function `hex` takes a sequence of values and writes hexadecimal characters. There are three different interfaces, differing only in how the input sequence is specified.
The first one takes an iterator pair. The second one takes a pointer to the start of a zero-terminated sequence, such as a c string, and the third takes a range as defined by the Boost.Range library.
``
template <typename InputIterator, typename OutputIterator>
OutputIterator hex ( InputIterator first, InputIterator last, OutputIterator out );
template <typename T, typename OutputIterator>
OutputIterator hex ( const T *ptr, OutputIterator out );
template <typename Range, typename OutputIterator>
OutputIterator hex ( const Range &r, OutputIterator out );
``
`hex` writes only values in the range '0'..'9' and 'A'..'F', but is not limited to character output. The output iterator could refer to a wstring, or a vector of integers, or any other integral type.
The function `unhex` takes the output of `hex` and turns it back into a sequence of values.
The input parameters for the different variations of `unhex` are the same as `hex`.
``
template <typename InputIterator, typename OutputIterator>
OutputIterator unhex ( InputIterator first, InputIterator last, OutputIterator out );
template <typename T, typename OutputIterator>
OutputIterator unhex ( const T *ptr, OutputIterator out );
template <typename Range, typename OutputIterator>
OutputIterator unhex ( const Range &r, OutputIterator out );
``
[heading Error Handling]
The header 'hex.hpp' defines three exception classes:
``
struct hex_decode_error: virtual boost::exception, virtual std::exception {};
struct not_enough_input : public hex_decode_error;
struct non_hex_input : public hex_decode_error;
``
If the input to `unhex` does not contain an "even number" of hex digits, then an exception of type `boost::algorithm::not_enough_input` is thrown.
If the input to `unhex` contains any non-hexadecimal characters, then an exception of type `boost::algorithm::non_hex_input` is thrown.
If you want to catch all the decoding errors, you can catch exceptions of type `boost::algorithm::hex_decode_error`.
[heading Examples]
Assuming that `out` is an iterator that accepts `char` values, and `wout` accepts `wchar_t` values (and that sizeof ( wchar_t ) == 2)
``
hex ( "abcdef", out ) --> "616263646566"
hex ( "32", out ) --> "3332"
hex ( "abcdef", wout ) --> "006100620063006400650066"
hex ( "32", wout ) --> "00330032"
unhex ( "616263646566", out ) --> "abcdef"
unhex ( "3332", out ) --> "32"
unhex ( "616263646566", wout ) --> "\6162\6364\6566" ( i.e, a 3 character string )
unhex ( "3332", wout ) --> "\3233" ( U+3332, SQUARE HUARADDO )
unhex ( "3", out ) --> Error - not enough input
unhex ( "32", wout ) --> Error - not enough input
unhex ( "ACEG", out ) --> Error - non-hex input
``
[heading Iterator Requirements]
`hex` and `unhex` work on all iterator types.
[heading Complexity]
All of the variants of `hex` and `unhex` run in ['O(N)] (linear) time; that is, that is, they process each element in the input sequence once.
[heading Exception Safety]
All of the variants of `hex` and `unhex` take their parameters by value or const reference, and do not depend upon any global state. Therefore, all the routines in this file provide the strong exception guarantee. However, when working on input iterators, if an exception is thrown, the input iterators will not be reset to their original values (i.e, the characters read from the iterator cannot be un-read)
[heading Notes]
* `hex` and `unhex` both do nothing when passed empty ranges.
[endsect]
[/ File hex.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,69 +0,0 @@
[/ File is_partitioned.qbk]
[section:is_partitioned is_partitioned ]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
The header file 'is_partitioned.hpp' contains two variants of a single algorithm, `is_partitioned`. The algorithm tests to see if a sequence is partitioned according to a predicate; in other words, all the items in the sequence that satisfy the predicate are at the beginning of the sequence.
The routine `is_partitioned` takes a sequence and a predicate. It returns true if the sequence is partitioned according to the predicate.
`is_partitioned` come in two forms; the first one takes two iterators to define the range. The second form takes a single range parameter, and uses Boost.Range to traverse it.
[heading interface]
The function `is_partitioned` returns true the items in the sequence are separated according to their ability to satisfy the predicate. There are two versions; one takes two iterators, and the other takes a range.
``
template<typename InputIterator, typename Predicate>
bool is_partitioned ( InputIterator first, InputIterator last, Predicate p );
template<typename Range, typename Predicate>
bool is_partitioned ( const Range &r, Predicate p );
``
[heading Examples]
Given the container `c` containing `{ 0, 1, 2, 3, 14, 15 }`, then
``
bool isOdd ( int i ) { return i % 2 == 1; }
bool lessThan10 ( int i ) { return i < 10; }
is_partitioned ( c, isOdd ) --> false
is_partitioned ( c, lessThan10 ) --> true
is_partitioned ( c.begin (), c.end (), lessThan10 ) --> true
is_partitioned ( c.begin (), c.begin () + 3, lessThan10 ) --> true
is_partitioned ( c.end (), c.end (), isOdd ) --> true // empty range
``
[heading Iterator Requirements]
`is_partitioned` works on all iterators except output iterators.
[heading Complexity]
Both of the variants of `is_partitioned` run in ['O(N)] (linear) time; that is, they compare against each element in the list once. If the sequence is found to be not partitioned at any point, the routine will terminate immediately, without examining the rest of the elements.
[heading Exception Safety]
Both of the variants of `is_partitioned` take their parameters by value or const reference, and do not depend upon any global state. Therefore, all the routines in this file provide the strong exception guarantee.
[heading Notes]
* The iterator-based version of the routine `is_partitioned` is part of the C++11 standard. When compiled using a C++11 implementation, the implementation from the standard library will be used.
* `is_partitioned` returns true for empty ranges, no matter what predicate is passed to test against.
[endsect]
[/ File is_partitioned.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,27 +0,0 @@
[/ QuickBook Document version 1.5 ]
[section:KnuthMorrisPratt Knuth-Morris-Pratt Search]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[heading Overview]
The header file 'knuth_morris_pratt.hpp' contains an an implementation of the Knuth-Morris-Pratt algorithm for searching sequences of values.
[endsect]
[/ File knuth_morris_pratt.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,90 +0,0 @@
[/ File none_of.qbk]
[section:none_of none_of]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
The header file 'boost/algorithm/cxx11/none_of.hpp' contains four variants of a single algorithm, `none_of`. The algorithm tests all the elements of a sequence and returns true if they none of them share a property.
The routine `none_of` takes a sequence and a predicate. It will return true if the predicate returns false when applied to every element in the sequence.
The routine `none_of_equal` takes a sequence and a value. It will return true if none of the elements in the sequence compare equal to the passed in value.
Both routines come in two forms; the first one takes two iterators to define the range. The second form takes a single range parameter, and uses Boost.Range to traverse it.
[heading interface]
The function `none_of` returns true if the predicate returns false for every item in the sequence. There are two versions; one takes two iterators, and the other takes a range.
``
namespace boost { namespace algorithm {
template<typename InputIterator, typename Predicate>
bool none_of ( InputIterator first, InputIterator last, Predicate p );
template<typename Range, typename Predicate>
bool none_of ( const Range &r, Predicate p );
}}
``
The function `none_of_equal` is similar to `none_of`, but instead of taking a predicate to test the elements of the sequence, it takes a value to compare against.
``
namespace boost { namespace algorithm {
template<typename InputIterator, typename V>
bool none_of_equal ( InputIterator first, InputIterator last, V const &val );
template<typename Range, typename V>
bool none_of_equal ( const Range &r, V const &val );
}}
``
[heading Examples]
Given the container `c` containing `{ 0, 1, 2, 3, 14, 15 }`, then
``
bool isOdd ( int i ) { return i % 2 == 1; }
bool lessThan10 ( int i ) { return i < 10; }
using boost::algorithm;
none_of ( c, isOdd ) --> false
none_of ( c.begin (), c.end (), lessThan10 ) --> false
none_of ( c.begin () + 4, c.end (), lessThan10 ) --> true
none_of ( c.end (), c.end (), isOdd ) --> true // empty range
none_of_equal ( c, 3 ) --> false
none_of_equal ( c.begin (), c.begin () + 3, 3 ) --> true
none_of_equal ( c.begin (), c.begin (), 99 ) --> true // empty range
``
[heading Iterator Requirements]
`none_of` and `none_of_equal` work on all iterators except output iterators.
[heading Complexity]
All of the variants of `none_of` and `none_of_equal` run in ['O(N)] (linear) time; that is, they compare against each element in the list once. If any of the comparisons succeed, the algorithm will terminate immediately, without examining the remaining members of the sequence.
[heading Exception Safety]
All of the variants of `none_of` and `none_of_equal` take their parameters by value or const reference, and do not depend upon any global state. Therefore, all the routines in this file provide the strong exception guarantee.
[heading Notes]
* The routine `none_of` is part of the C++11 standard. When compiled using a C++11 implementation, the implementation from the standard library will be used.
* `none_of` and `none_of_equal` both return true for empty ranges, no matter what is passed to test against.
* The second parameter to `none_of_value` is a template parameter, rather than deduced from the first parameter (`std::iterator_traits<InputIterator>::value_type`) because that allows more flexibility for callers, and takes advantage of built-in comparisons for the type that is pointed to by the iterator. The function is defined to return true if, for all elements in the sequence, the expression `*iter == val` evaluates to false (where `iter` is an iterator to each element in the sequence)
[endsect]
[/ File none_of.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,87 +0,0 @@
[/ File one_of.qbk]
[section:one_of one_of]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
The header file 'boost/algorithm/cxx11/one_of.hpp' contains four variants of a single algorithm, `one_of`. The algorithm tests the elements of a sequence and returns true if exactly one of the elements in the sequence has a particular property.
The routine `one_of` takes a sequence and a predicate. It will return true if the predicate returns true for one element in the sequence.
The routine `one_of_equal` takes a sequence and a value. It will return true if one element in the sequence compares equal to the passed in value.
Both routines come in two forms; the first one takes two iterators to define the range. The second form takes a single range parameter, and uses Boost.Range to traverse it.
[heading interface]
The function `one_of` returns true if the predicate returns true for one item in the sequence. There are two versions; one takes two iterators, and the other takes a range.
``
namespace boost { namespace algorithm {
template<typename InputIterator, typename Predicate>
bool one_of ( InputIterator first, InputIterator last, Predicate p );
template<typename Range, typename Predicate>
bool one_of ( const Range &r, Predicate p );
}}
``
The function `one_of_equal` is similar to `one_of`, but instead of taking a predicate to test the elements of the sequence, it takes a value to compare against.
``
namespace boost { namespace algorithm {
template<typename InputIterator, typename V>
bool one_of_equal ( InputIterator first, InputIterator last, V const &val );
template<typename Range, typename V>
bool one_of_equal ( const Range &r, V const &val );
}}
``
[heading Examples]
Given the container `c` containing `{ 0, 1, 2, 3, 14, 15 }`, then
``
bool isOdd ( int i ) { return i % 2 == 1; }
bool lessThan10 ( int i ) { return i < 10; }
using boost::algorithm;
one_of ( c, isOdd ) --> false
one_of ( c.begin (), c.end (), lessThan10 ) --> false
one_of ( c.begin () + 3, c.end (), lessThan10 ) --> true
one_of ( c.end (), c.end (), isOdd ) --> false // empty range
one_of_equal ( c, 3 ) --> true
one_of_equal ( c.begin (), c.begin () + 3, 3 ) --> false
one_of_equal ( c.begin (), c.begin (), 99 ) --> false // empty range
``
[heading Iterator Requirements]
`one_of` and `one_of_equal` work on all iterators except output iterators.
[heading Complexity]
All of the variants of `one_of` and `one_of_equal` run in ['O(N)] (linear) time; that is, they compare against each element in the list once. If more than one of the elements in the sequence satisfy the condition, then algorithm will return false immediately, without examining the remaining members of the sequence.
[heading Exception Safety]
All of the variants of `one_of` and `one_of_equal` take their parameters by value or const reference, and do not depend upon any global state. Therefore, all the routines in this file provide the strong exception guarantee.
[heading Notes]
* `one_of` and `one_of_equal` both return false for empty ranges, no matter what is passed to test against.
* The second parameter to `one_of_value` is a template parameter, rather than deduced from the first parameter (`std::iterator_traits<InputIterator>::value_type`) because that allows more flexibility for callers, and takes advantage of built-in comparisons for the type that is pointed to by the iterator. The function is defined to return true if, for one element in the sequence, the expression `*iter == val` evaluates to true (where `iter` is an iterator to each element in the sequence)
[endsect]
[/ File one_of.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

View File

@ -1,130 +0,0 @@
[/ QuickBook Document version 1.5 ]
[section:is_sorted is_sorted ]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
The header file `<boost/algorithm/cxx11/is_sorted.hpp>` contains functions for determining if a sequence is ordered.
[heading is_sorted]
The function `is_sorted(sequence)` determines whether or not a sequence is completely sorted according so some criteria. If no comparison predicate is specified, then std::less_equal is used (i.e, the test is to see if the sequence is non-decreasing)
``
namespace boost { namespace algorithm {
template <typename Iterator, typename Pred>
bool is_sorted ( Iterator first, Iterator last, Pred p );
template <typename Iterator>
bool is_sorted ( Iterator first, Iterator last );
template <typename Range, typename Pred>
bool is_sorted ( const Range &r, Pred p );
template <typename Range>
bool is_sorted ( const Range &r );
}}
``
Iterator requirements: The `is_sorted` functions will work on all kinds of iterators (except output iterators).
[heading is_sorted_until]
If `distance(first, last) < 2`, then `is_sorted ( first, last )` returns `last`. Otherwise, it returns the last iterator i in [first,last] for which the range [first,i) is sorted.
In short, it returns the element in the sequence that is "out of order". If the entire sequence is sorted (according to the predicate), then it will return `last`.
``
namespace boost { namespace algorithm {
template <typename ForwardIterator, typename Pred>
FI is_sorted_until ( ForwardIterator first, ForwardIterator last, Pred p );
template <typename ForwardIterator>
ForwardIterator is_sorted_until ( ForwardIterator first, ForwardIterator last );
template <typename Range, typename Pred>
typename boost::range_iterator<const R>::type is_sorted_until ( const Range &r, Pred p );
template <typename Range>
typename boost::range_iterator<const R>::type is_sorted_until ( const Range &r );
}}
``
Iterator requirements: The `is_sorted_until` functions will work on forward iterators or better. Since they have to return a place in the input sequence, input iterators will not suffice.
Complexity:
`is_sorted_until` will make at most ['N-1] calls to the predicate (given a sequence of length ['N]).
Examples:
Given the sequence `{ 1, 2, 3, 4, 5, 3 }`, `is_sorted_until ( beg, end, std::less<int>())` would return an iterator pointing at the second `3`.
Given the sequence `{ 1, 2, 3, 4, 5, 9 }`, `is_sorted_until ( beg, end, std::less<int>())` would return `end`.
There are also a set of "wrapper functions" for is_ordered which make it easy to see if an entire sequence is ordered. These functions return a boolean indicating success or failure rather than an iterator to where the out of order items were found.
To test if a sequence is increasing (each element at least as large as the preceeding one):
``
namespace boost { namespace algorithm {
template <typename Iterator>
bool is_increasing ( Iterator first, Iterator last );
template <typename R>
bool is_increasing ( const R &range );
}}
``
To test if a sequence is decreasing (each element no larger than the preceeding one):
``
namespace boost { namespace algorithm {
template <typename Iterator>
bool is_decreasing ( Iterator first, Iterator last );
template <typename R>
bool is_decreasing ( const R &range );
}}
``
To test if a sequence is strictly increasing (each element larger than the preceeding one):
``
namespace boost { namespace algorithm {
template <typename Iterator>
bool is_strictly_increasing ( Iterator first, Iterator last );
template <typename R>
bool is_strictly_increasing ( const R &range );
}}
``
To test if a sequence is strictly decreasing (each element smaller than the preceeding one):
``
namespace boost { namespace algorithm {
template <typename Iterator>
bool is_strictly_decreasing ( Iterator first, Iterator last );
template <typename R>
bool is_strictly_decreasing ( const R &range );
}}
``
Complexity:
Each of these calls is just a thin wrapper over `is_sorted`, so they have the same complexity as `is_sorted`.
[heading Notes]
* The routines `is_sorted` and `is_sorted_until` are part of the C++11 standard. When compiled using a C++11 implementation, the implementation from the standard library will be used.
* `is_sorted` and `is_sorted_until` both return true for empty ranges and ranges of length one.
[endsect]

View File

@ -1,68 +0,0 @@
[/ File partition_point.qbk]
[section:partition_point partition_point ]
[/license
Copyright (c) 2010-2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
The header file 'partition_point.hpp' contains two variants of a single algorithm, `partition_point`. Given a partitioned sequence and a predicate, the algorithm finds the partition point; i.e, the first element in the sequence that does not satisfy the predicate.
The routine `partition_point` takes a partitioned sequence and a predicate. It returns an iterator which 'points to' the first element in the sequence that does not satisfy the predicate. If all the items in the sequence satisfy the predicate, then it returns one past the final element in the sequence.
`partition_point` come in two forms; the first one takes two iterators to define the range. The second form takes a single range parameter, and uses Boost.Range to traverse it.
[heading interface]
There are two versions; one takes two iterators, and the other takes a range.
``
template<typename ForwardIterator, typename Predicate>
ForwardIterator partition_point ( ForwardIterator first, ForwardIterator last, Predicate p );
template<typename Range, typename Predicate>
boost::range_iterator<Range> partition_point ( const Range &r, Predicate p );
``
[heading Examples]
Given the container `c` containing `{ 0, 1, 2, 3, 14, 15 }`, then
``
bool lessThan10 ( int i ) { return i < 10; }
bool isOdd ( int i ) { return i % 2 == 1; }
partition_point ( c, lessThan10 ) --> c.begin () + 4 (pointing at 14)
partition_point ( c.begin (), c.end (), lessThan10 ) --> c.begin () + 4 (pointing at 14)
partition_point ( c.begin (), c.begin () + 3, lessThan10 ) -> c.begin () + 3 (end)
partition_point ( c.end (), c.end (), isOdd ) --> c.end () // empty range
``
[heading Iterator Requirements]
`partition_point` requires forward iterators or better; it will not work on input iterators or output iterators.
[heading Complexity]
Both of the variants of `partition_point` run in ['O( log (N))] (logarithmic) time; that is, the predicate will be will be applied approximately ['log(N)] times. To do this, however, the algorithm needs to know the size of the sequence. For forward and bidirectional iterators, calculating the size of the sequence is an ['O(N)] operation.
[heading Exception Safety]
Both of the variants of `partition_point` take their parameters by value or const reference, and do not depend upon any global state. Therefore, all the routines in this file provide the strong exception guarantee.
[heading Notes]
* The iterator-based version of the routine `partition_point` is part of the C++11 standard. When compiled using a C++11 implementation, the implementation from the standard library will be used.
* For empty ranges, the partition point is the end of the range.
[endsect]
[/ File partition_point.qbk
Copyright 2011 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]

0
include/boost/algorithm/clamp.hpp Normal file → Executable file
View File

View File

@ -12,7 +12,6 @@
#ifndef BOOST_ALGORITHM_ALL_OF_HPP
#define BOOST_ALGORITHM_ALL_OF_HPP
#include <algorithm> // for std::all_of, if available
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>

View File

@ -14,7 +14,6 @@
#ifndef BOOST_ALGORITHM_ANY_OF_HPP
#define BOOST_ALGORITHM_ANY_OF_HPP
#include <algorithm> // for std::any_of, if available
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>

View File

@ -12,7 +12,7 @@
#ifndef BOOST_ALGORITHM_COPY_IF_HPP
#define BOOST_ALGORITHM_COPY_IF_HPP
#include <algorithm> // for std::copy_if, if available
#include <algorithm> // for std::copy_if, if available
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
@ -39,7 +39,7 @@ OutputIterator copy_if ( InputIterator first, InputIterator last, OutputIterator
{
for ( ; first != last; ++first )
if (p(*first))
*result++ = *first;
*result++ = first;
return result;
}
#endif
@ -75,7 +75,7 @@ OutputIterator copy_while ( InputIterator first, InputIterator last,
OutputIterator result, Predicate p )
{
for ( ; first != last && p(*first); ++first )
*result++ = *first;
*result++ = first;
return result;
}
@ -109,7 +109,7 @@ template<typename InputIterator, typename OutputIterator, typename Predicate>
OutputIterator copy_until ( InputIterator first, InputIterator last, OutputIterator result, Predicate p )
{
for ( ; first != last && !p(*first); ++first )
*result++ = *first;
*result++ = first;
return result;
}

View File

@ -71,4 +71,4 @@ OutputIterator iota_n ( OutputIterator out, T value, std::size_t n )
}}
#endif // BOOST_ALGORITHM_IOTA_HPP
#endif // BOOST_ALGORITHM_IOTA_HPP

View File

@ -12,7 +12,7 @@
#ifndef BOOST_ALGORITHM_IS_PARTITIONED_HPP
#define BOOST_ALGORITHM_IS_PARTITIONED_HPP
#include <algorithm> // for std::is_partitioned, if available
#include <algorithm> // for std::is_partitioned, if available
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
@ -20,7 +20,7 @@
namespace boost { namespace algorithm {
#if __cplusplus >= 201103L
// Use the C++11 versions of is_partitioned if it is available
// Use the C++11 versions of iota if it is available
using std::is_partitioned; // Section 25.3.13
#else
/// \fn is_partitioned ( InputIterator first, InputIterator last, UnaryPredicate p )
@ -35,14 +35,14 @@ using std::is_partitioned; // Section 25.3.13
template <typename InputIterator, typename UnaryPredicate>
bool is_partitioned ( InputIterator first, InputIterator last, UnaryPredicate p )
{
// Run through the part that satisfy the predicate
// Run through the part that satisfy the predicate
for ( ; first != last; ++first )
if ( !p (*first))
break;
// Now the part that does not satisfy the predicate
break;
// Now the part that does not satisfy the predicate
for ( ; first != last; ++first )
if ( p (*first))
return false;
return false;
return true;
}
#endif
@ -62,4 +62,4 @@ bool is_partitioned ( const Range &r, UnaryPredicate p )
}}
#endif // BOOST_ALGORITHM_IS_PARTITIONED_HPP
#endif // BOOST_ALGORITHM_IS_PARTITIONED_HPP

View File

@ -46,7 +46,7 @@ namespace detail {
/// \fn is_permutation ( ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 first2, BinaryPredicate p )
/// \brief Tests to see if the sequence [first,last) is a permutation of the sequence starting at first2
/// \brief Tests to see if a the sequence [first,last) is a permutation of the sequence starting at first2
///
/// \param first The start of the input sequence
/// \param last One past the end of the input sequence
@ -88,7 +88,7 @@ bool is_permutation ( ForwardIterator1 first1, ForwardIterator1 last1,
}
/// \fn is_permutation ( ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 first2 )
/// \brief Tests to see if the sequence [first,last) is a permutation of the sequence starting at first2
/// \brief Tests to see if a the sequence [first,last) is a permutation of the sequence starting at first2
///
/// \param first The start of the input sequence
/// \param last One past the end of the input sequence
@ -108,7 +108,7 @@ bool is_permutation ( ForwardIterator1 first, ForwardIterator1 last, ForwardIter
#endif
/// \fn is_permutation ( const Range &r, ForwardIterator first2 )
/// \brief Tests to see if the sequence [first,last) is a permutation of the sequence starting at first2
/// \brief Tests to see if a the sequence [first,last) is a permutation of the sequence starting at first2
///
/// \param r The input range
/// \param first2 The start of the second sequence
@ -119,7 +119,7 @@ bool is_permutation ( const Range &r, ForwardIterator first2 )
}
/// \fn is_permutation ( const Range &r, ForwardIterator first2, BinaryPredicate pred )
/// \brief Tests to see if the sequence [first,last) is a permutation of the sequence starting at first2
/// \brief Tests to see if a the sequence [first,last) is a permutation of the sequence starting at first2
///
/// \param r The input range
/// \param first2 The start of the second sequence
@ -136,4 +136,4 @@ is_permutation ( const Range &r, ForwardIterator first2, BinaryPredicate pred )
}}
#endif // BOOST_ALGORITHM_IS_PERMUTATION_HPP
#endif // BOOST_ALGORITHM_IS_PERMUTATION_HPP

View File

@ -12,7 +12,6 @@
#ifndef BOOST_ALGORITHM_NONE_OF_HPP
#define BOOST_ALGORITHM_NONE_OF_HPP
#include <algorithm> // for std::none_of, if available
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>

View File

@ -22,12 +22,11 @@
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/mpl/identity.hpp>
namespace boost { namespace algorithm {
#if __cplusplus >= 201103L
// Use the C++11 versions of is_sorted/is_sorted_until if they are available
// Use the C++11 versions of iota if it is available
using std::is_sorted_until; // Section 25.4.1.5
using std::is_sorted; // Section 25.4.1.5
#else
@ -46,7 +45,7 @@ using std::is_sorted; // Section 25.4.1.5
ForwardIterator next = first;
while ( ++next != last )
{
if ( p ( *next, *first ))
if ( !p ( *first, *next ))
return next;
first = next;
}
@ -63,7 +62,7 @@ using std::is_sorted; // Section 25.4.1.5
ForwardIterator is_sorted_until ( ForwardIterator first, ForwardIterator last )
{
typedef typename std::iterator_traits<ForwardIterator>::value_type value_type;
return boost::algorithm::is_sorted_until ( first, last, std::less<value_type>());
return boost::algorithm::is_sorted_until ( first, last, std::less_equal<value_type>());
}
@ -94,7 +93,7 @@ using std::is_sorted; // Section 25.4.1.5
#endif
///
/// -- Range based versions of the C++11 functions
/// -- Range based versions of the C++11 functions
///
/// \fn is_sorted_until ( const R &range, Pred p )
@ -125,6 +124,7 @@ using std::is_sorted; // Section 25.4.1.5
return boost::algorithm::is_sorted_until ( boost::begin ( range ), boost::end ( range ));
}
/// \fn is_sorted ( const R &range, Pred p )
/// \return whether or not the entire range R is sorted
/// (according to the comparison predicate 'p').
@ -133,8 +133,7 @@ using std::is_sorted; // Section 25.4.1.5
/// \param p A binary predicate that returns true if two elements are ordered.
///
template <typename R, typename Pred>
typename boost::lazy_disable_if_c< boost::is_same<R, Pred>::value, boost::mpl::identity<bool> >::type
is_sorted ( const R &range, Pred p )
bool is_sorted ( const R &range, Pred p )
{
return boost::algorithm::is_sorted ( boost::begin ( range ), boost::end ( range ), p );
}
@ -145,7 +144,7 @@ using std::is_sorted; // Section 25.4.1.5
///
/// \param range The range to be tested.
///
template <typename R>
template <typename R, typename Pred>
bool is_sorted ( const R &range )
{
return boost::algorithm::is_sorted ( boost::begin ( range ), boost::end ( range ));
@ -153,7 +152,7 @@ using std::is_sorted; // Section 25.4.1.5
///
/// -- Range based versions of the C++11 functions
/// -- Range based versions of the C++11 functions
///
/// \fn is_increasing ( ForwardIterator first, ForwardIterator last )
@ -169,7 +168,7 @@ using std::is_sorted; // Section 25.4.1.5
bool is_increasing ( ForwardIterator first, ForwardIterator last )
{
typedef typename std::iterator_traits<ForwardIterator>::value_type value_type;
return boost::algorithm::is_sorted (first, last, std::less<value_type>());
return boost::algorithm::is_sorted (first, last, std::less_equal<value_type>());
}
@ -202,7 +201,7 @@ using std::is_sorted; // Section 25.4.1.5
bool is_decreasing ( ForwardIterator first, ForwardIterator last )
{
typedef typename std::iterator_traits<ForwardIterator>::value_type value_type;
return boost::algorithm::is_sorted (first, last, std::greater<value_type>());
return boost::algorithm::is_sorted (first, last, std::greater_equal<value_type>());
}
/// \fn is_decreasing ( const R &range )
@ -234,7 +233,7 @@ using std::is_sorted; // Section 25.4.1.5
bool is_strictly_increasing ( ForwardIterator first, ForwardIterator last )
{
typedef typename std::iterator_traits<ForwardIterator>::value_type value_type;
return boost::algorithm::is_sorted (first, last, std::less_equal<value_type>());
return boost::algorithm::is_sorted (first, last, std::less<value_type>());
}
/// \fn is_strictly_increasing ( const R &range )
@ -265,7 +264,7 @@ using std::is_sorted; // Section 25.4.1.5
bool is_strictly_decreasing ( ForwardIterator first, ForwardIterator last )
{
typedef typename std::iterator_traits<ForwardIterator>::value_type value_type;
return boost::algorithm::is_sorted (first, last, std::greater_equal<value_type>());
return boost::algorithm::is_sorted (first, last, std::greater<value_type>());
}
/// \fn is_strictly_decreasing ( const R &range )

View File

@ -12,7 +12,6 @@
#ifndef BOOST_ALGORITHM_PARTITION_COPY_HPP
#define BOOST_ALGORITHM_PARTITION_COPY_HPP
#include <algorithm> // for std::partition_copy, if available
#include <utility> // for make_pair
#include <boost/range/begin.hpp>

View File

@ -12,7 +12,7 @@
#ifndef BOOST_ALGORITHM_PARTITION_POINT_HPP
#define BOOST_ALGORITHM_PARTITION_POINT_HPP
#include <algorithm> // for std::partition_point, if available
#include <algorithm> // for std::partition_point, if available
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
@ -20,12 +20,12 @@
namespace boost { namespace algorithm {
#if __cplusplus >= 201103L
// Use the C++11 versions of partition_point if it is available
// Use the C++11 versions of iota if it is available
using std::partition_point; // Section 25.3.13
#else
/// \fn partition_point ( ForwardIterator first, ForwardIterator last, Predicate p )
/// \brief Given a partitioned range, returns the partition point, i.e, the first element
/// that does not satisfy p
/// that does not satisfy p
///
/// \param first The start of the input sequence
/// \param last One past the end of the input sequence
@ -69,4 +69,4 @@ typename boost::range_iterator<Range> partition_point ( Range &r, Predicate p )
}}
#endif // BOOST_ALGORITHM_PARTITION_POINT_HPP
#endif // BOOST_ALGORITHM_PARTITION_POINT_HPP

View File

@ -1,269 +0,0 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Thanks to Nevin for his comments/help.
*/
/*
General problem - turn a sequence of integral types into a sequence of hexadecimal characters.
- and back.
TO DO:
1. these should really only work on integral types. (see the >> and << operations)
-- this is done, I think.
2. The 'value_type_or_char' struct is really a hack.
-- but it's a better hack now that it works with back_insert_iterators
*/
/// \file hex.hpp
/// \brief Convert sequence of integral types into a sequence of hexadecimal
/// characters and back. Based on the MySQL functions HEX and UNHEX
/// \author Marshall Clow
#ifndef BOOST_ALGORITHM_HEXHPP
#define BOOST_ALGORITHM_HEXHPP
#include <iterator> // for std::iterator_traits
#include <stdexcept>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/exception/all.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_integral.hpp>
namespace boost { namespace algorithm {
/*!
\struct hex_decode_error
\brief Base exception class for all hex decoding errors
\struct non_hex_input
\brief Thrown when a non-hex value (0-9, A-F) encountered when decoding.
Contains the offending character
\struct not_enough_input
\brief Thrown when the input sequence unexpectedly ends
*/
struct hex_decode_error : virtual boost::exception, virtual std::exception {};
struct not_enough_input : virtual hex_decode_error {};
struct non_hex_input : virtual hex_decode_error {};
typedef boost::error_info<struct bad_char_,char> bad_char;
namespace detail {
/// \cond DOXYGEN_HIDE
template <typename T, typename OutputIterator>
OutputIterator encode_one ( T val, OutputIterator out ) {
const std::size_t num_hex_digits = 2 * sizeof ( T );
char res [ num_hex_digits ];
char *p = res + num_hex_digits;
for ( std::size_t i = 0; i < num_hex_digits; ++i, val >>= 4 )
*--p = "0123456789ABCDEF" [ val & 0x0F ];
return std::copy ( res, res + num_hex_digits, out );
}
// this needs to be in an un-named namespace because it is not a template
// and might get included in several compilation units. This could cause
// multiple definition errors at link time.
namespace {
unsigned hex_char_to_int ( char c ) {
if ( c >= '0' && c <= '9' ) return c - '0';
if ( c >= 'A' && c <= 'F' ) return c - 'A' + 10;
if ( c >= 'a' && c <= 'f' ) return c - 'a' + 10;
BOOST_THROW_EXCEPTION (non_hex_input() << bad_char (c));
return 0; // keep dumb compilers happy
}
}
// My own iterator_traits class.
// It is here so that I can "reach inside" some kinds of output iterators
// and get the type to write.
template <typename Iterator>
struct hex_iterator_traits {
typedef typename std::iterator_traits<Iterator>::value_type value_type;
};
template<typename Container>
struct hex_iterator_traits< std::back_insert_iterator<Container> > {
typedef typename Container::value_type value_type;
};
template<typename Container>
struct hex_iterator_traits< std::front_insert_iterator<Container> > {
typedef typename Container::value_type value_type;
};
template<typename Container>
struct hex_iterator_traits< std::insert_iterator<Container> > {
typedef typename Container::value_type value_type;
};
// ostream_iterators have three template parameters.
// The first one is the output type, the second one is the character type of
// the underlying stream, the third is the character traits.
// We only care about the first one.
template<typename T, typename charType, typename traits>
struct hex_iterator_traits< std::ostream_iterator<T, charType, traits> > {
typedef T value_type;
};
template <typename Iterator>
bool iter_end ( Iterator current, Iterator last ) { return current == last; }
template <typename T>
bool ptr_end ( const T* ptr, const T* /*end*/ ) { return *ptr == '\0'; }
// What can we assume here about the inputs?
// is std::iterator_traits<InputIterator>::value_type always 'char' ?
// Could it be wchar_t, say? Does it matter?
// We are assuming ASCII for the values - but what about the storage?
template <typename InputIterator, typename OutputIterator, typename EndPred>
typename boost::enable_if<boost::is_integral<typename hex_iterator_traits<OutputIterator>::value_type>, OutputIterator>::type
decode_one ( InputIterator &first, InputIterator last, OutputIterator out, EndPred pred ) {
typedef typename hex_iterator_traits<OutputIterator>::value_type T;
T res (0);
// Need to make sure that we get can read that many chars here.
for ( std::size_t i = 0; i < 2 * sizeof ( T ); ++i, ++first ) {
if ( pred ( first, last ))
BOOST_THROW_EXCEPTION (not_enough_input ());
res = ( 16 * res ) + hex_char_to_int (static_cast<char> (*first));
}
*out = res;
return ++out;
}
/// \endcond
}
/// \fn hex ( InputIterator first, InputIterator last, OutputIterator out )
/// \brief Converts a sequence of integral types into a hexadecimal sequence of characters.
///
/// \param first The start of the input sequence
/// \param last One past the end of the input sequence
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename InputIterator, typename OutputIterator>
typename boost::enable_if<boost::is_integral<typename detail::hex_iterator_traits<InputIterator>::value_type>, OutputIterator>::type
hex ( InputIterator first, InputIterator last, OutputIterator out ) {
for ( ; first != last; ++first )
out = detail::encode_one ( *first, out );
return out;
}
/// \fn hex ( const T *ptr, OutputIterator out )
/// \brief Converts a sequence of integral types into a hexadecimal sequence of characters.
///
/// \param ptr A pointer to a 0-terminated sequence of data.
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename T, typename OutputIterator>
typename boost::enable_if<boost::is_integral<T>, OutputIterator>::type
hex ( const T *ptr, OutputIterator out ) {
while ( *ptr )
out = detail::encode_one ( *ptr++, out );
return out;
}
/// \fn hex ( const Range &r, OutputIterator out )
/// \brief Converts a sequence of integral types into a hexadecimal sequence of characters.
///
/// \param r The input range
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename Range, typename OutputIterator>
typename boost::enable_if<boost::is_integral<typename detail::hex_iterator_traits<typename Range::iterator>::value_type>, OutputIterator>::type
hex ( const Range &r, OutputIterator out ) {
return hex (boost::begin(r), boost::end(r), out);
}
/// \fn unhex ( InputIterator first, InputIterator last, OutputIterator out )
/// \brief Converts a sequence of hexadecimal characters into a sequence of integers.
///
/// \param first The start of the input sequence
/// \param last One past the end of the input sequence
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename InputIterator, typename OutputIterator>
OutputIterator unhex ( InputIterator first, InputIterator last, OutputIterator out ) {
while ( first != last )
out = detail::decode_one ( first, last, out, detail::iter_end<InputIterator> );
return out;
}
/// \fn unhex ( const T *ptr, OutputIterator out )
/// \brief Converts a sequence of hexadecimal characters into a sequence of integers.
///
/// \param ptr A pointer to a null-terminated input sequence.
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename T, typename OutputIterator>
OutputIterator unhex ( const T *ptr, OutputIterator out ) {
typedef typename detail::hex_iterator_traits<OutputIterator>::value_type OutputType;
// If we run into the terminator while decoding, we will throw a
// malformed input exception. It would be nicer to throw a 'Not enough input'
// exception - but how much extra work would that require?
while ( *ptr )
out = detail::decode_one ( ptr, (const T *) NULL, out, detail::ptr_end<T> );
return out;
}
/// \fn OutputIterator unhex ( const Range &r, OutputIterator out )
/// \brief Converts a sequence of hexadecimal characters into a sequence of integers.
///
/// \param r The input range
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename Range, typename OutputIterator>
OutputIterator unhex ( const Range &r, OutputIterator out ) {
return unhex (boost::begin(r), boost::end(r), out);
}
/// \fn String hex ( const String &input )
/// \brief Converts a sequence of integral types into a hexadecimal sequence of characters.
///
/// \param input A container to be converted
/// \return A container with the encoded text
template<typename String>
String hex ( const String &input ) {
String output;
output.reserve (input.size () * (2 * sizeof (typename String::value_type)));
(void) hex (input, std::back_inserter (output));
return output;
}
/// \fn String unhex ( const String &input )
/// \brief Converts a sequence of hexadecimal characters into a sequence of characters.
///
/// \param input A container to be converted
/// \return A container with the decoded text
template<typename String>
String unhex ( const String &input ) {
String output;
output.reserve (input.size () / (2 * sizeof (typename String::value_type)));
(void) unhex (input, std::back_inserter (output));
return output;
}
}}
#endif // BOOST_ALGORITHM_HEXHPP

4
include/boost/algorithm/searching/boyer_moore.hpp Normal file → Executable file
View File

@ -223,7 +223,7 @@ Requirements:
corpusIter boyer_moore_search (
corpusIter corpus_first, corpusIter corpus_last, const PatternRange &pattern )
{
typedef typename boost::range_iterator<const PatternRange>::type pattern_iterator;
typedef typename boost::range_iterator<PatternRange> pattern_iterator;
boyer_moore<pattern_iterator> bm ( boost::begin(pattern), boost::end (pattern));
return bm ( corpus_first, corpus_last );
}
@ -242,7 +242,7 @@ Requirements:
typename boost::range_iterator<CorpusRange>::type
boyer_moore_search ( CorpusRange &corpus, const PatternRange &pattern )
{
typedef typename boost::range_iterator<const PatternRange>::type pattern_iterator;
typedef typename boost::range_iterator<PatternRange> pattern_iterator;
boyer_moore<pattern_iterator> bm ( boost::begin(pattern), boost::end (pattern));
return bm (boost::begin (corpus), boost::end (corpus));
}

View File

@ -14,11 +14,6 @@
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/algorithm/searching/detail/bm_traits.hpp>
@ -89,11 +84,6 @@ http://www-igm.univ-mlv.fr/%7Elecroq/string/node18.html
return this->do_search ( corpus_first, corpus_last );
}
template <typename Range>
typename boost::range_iterator<Range>::type operator () ( Range &r ) const {
return (*this) (boost::begin(r), boost::end(r));
}
private:
/// \cond DOXYGEN_HIDE
patIter pat_first, pat_last;
@ -129,9 +119,6 @@ http://www-igm.univ-mlv.fr/%7Elecroq/string/node18.html
// \endcond
};
/* Two ranges as inputs gives us four possibilities; with 2,3,3,4 parameters
Use a bit of TMP to disambiguate the 3-argument templates */
/// \fn boyer_moore_horspool_search ( corpusIter corpus_first, corpusIter corpus_last,
/// patIter pat_first, patIter pat_last )
/// \brief Searches the corpus for the pattern.
@ -143,55 +130,10 @@ http://www-igm.univ-mlv.fr/%7Elecroq/string/node18.html
///
template <typename patIter, typename corpusIter>
corpusIter boyer_moore_horspool_search (
corpusIter corpus_first, corpusIter corpus_last,
patIter pat_first, patIter pat_last )
{
corpusIter corpus_first, corpusIter corpus_last,
patIter pat_first, patIter pat_last ) {
boyer_moore_horspool<patIter> bmh ( pat_first, pat_last );
return bmh ( corpus_first, corpus_last );
}
template <typename PatternRange, typename corpusIter>
corpusIter boyer_moore_horspool_search (
corpusIter corpus_first, corpusIter corpus_last, const PatternRange &pattern )
{
typedef typename boost::range_iterator<const PatternRange>::type pattern_iterator;
boyer_moore_horspool<pattern_iterator> bmh ( boost::begin(pattern), boost::end (pattern));
return bmh ( corpus_first, corpus_last );
}
template <typename patIter, typename CorpusRange>
typename boost::lazy_disable_if_c<
boost::is_same<CorpusRange, patIter>::value, typename boost::range_iterator<CorpusRange> >
::type
boyer_moore_horspool_search ( CorpusRange &corpus, patIter pat_first, patIter pat_last )
{
boyer_moore_horspool<patIter> bmh ( pat_first, pat_last );
return bm (boost::begin (corpus), boost::end (corpus));
}
template <typename PatternRange, typename CorpusRange>
typename boost::range_iterator<CorpusRange>::type
boyer_moore_horspool_search ( CorpusRange &corpus, const PatternRange &pattern )
{
typedef typename boost::range_iterator<const PatternRange>::type pattern_iterator;
boyer_moore_horspool<pattern_iterator> bmh ( boost::begin(pattern), boost::end (pattern));
return bmh (boost::begin (corpus), boost::end (corpus));
}
// Creator functions -- take a pattern range, return an object
template <typename Range>
boost::algorithm::boyer_moore_horspool<typename boost::range_iterator<const Range>::type>
make_boyer_moore_horspool ( const Range &r ) {
return boost::algorithm::boyer_moore_horspool
<typename boost::range_iterator<const Range>::type> (boost::begin(r), boost::end(r));
}
template <typename Range>
boost::algorithm::boyer_moore_horspool<typename boost::range_iterator<Range>::type>
make_boyer_moore_horspool ( Range &r ) {
return boost::algorithm::boyer_moore_horspool
<typename boost::range_iterator<Range>::type> (boost::begin(r), boost::end(r));
}
}}

0
include/boost/algorithm/searching/detail/bm_traits.hpp Normal file → Executable file
View File

0
include/boost/algorithm/searching/detail/debugging.hpp Normal file → Executable file
View File

View File

@ -15,11 +15,6 @@
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/algorithm/searching/detail/debugging.hpp>
@ -37,7 +32,7 @@ namespace boost { namespace algorithm {
* Random-access iterators
* The two iterator types (I1 and I2) must "point to" the same underlying type.
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/KnuthMorrisPratt_algorithm
http://www.inf.fh-flensburg.de/lang/algorithmen/pattern/kmpen.htm
*/
@ -84,11 +79,6 @@ namespace boost { namespace algorithm {
return do_search ( corpus_first, corpus_last, k_corpus_length );
}
template <typename Range>
typename boost::range_iterator<Range>::type operator () ( Range &r ) const {
return (*this) (boost::begin(r), boost::end(r));
}
private:
/// \cond DOXYGEN_HIDE
patIter pat_first, pat_last;
@ -189,9 +179,6 @@ namespace boost { namespace algorithm {
};
/* Two ranges as inputs gives us four possibilities; with 2,3,3,4 parameters
Use a bit of TMP to disambiguate the 3-argument templates */
/// \fn knuth_morris_pratt_search ( corpusIter corpus_first, corpusIter corpus_last,
/// patIter pat_first, patIter pat_last )
/// \brief Searches the corpus for the pattern.
@ -203,55 +190,10 @@ namespace boost { namespace algorithm {
///
template <typename patIter, typename corpusIter>
corpusIter knuth_morris_pratt_search (
corpusIter corpus_first, corpusIter corpus_last,
patIter pat_first, patIter pat_last )
{
corpusIter corpus_first, corpusIter corpus_last,
patIter pat_first, patIter pat_last ) {
knuth_morris_pratt<patIter> kmp ( pat_first, pat_last );
return kmp ( corpus_first, corpus_last );
}
template <typename PatternRange, typename corpusIter>
corpusIter knuth_morris_pratt_search (
corpusIter corpus_first, corpusIter corpus_last, const PatternRange &pattern )
{
typedef typename boost::range_iterator<const PatternRange>::type pattern_iterator;
knuth_morris_pratt<pattern_iterator> kmp ( boost::begin(pattern), boost::end (pattern));
return kmp ( corpus_first, corpus_last );
}
template <typename patIter, typename CorpusRange>
typename boost::lazy_disable_if_c<
boost::is_same<CorpusRange, patIter>::value, typename boost::range_iterator<CorpusRange> >
::type
knuth_morris_pratt_search ( CorpusRange &corpus, patIter pat_first, patIter pat_last )
{
knuth_morris_pratt<patIter> kmp ( pat_first, pat_last );
return kmp (boost::begin (corpus), boost::end (corpus));
}
template <typename PatternRange, typename CorpusRange>
typename boost::range_iterator<CorpusRange>::type
knuth_morris_pratt_search ( CorpusRange &corpus, const PatternRange &pattern )
{
typedef typename boost::range_iterator<const PatternRange>::type pattern_iterator;
knuth_morris_pratt<pattern_iterator> kmp ( boost::begin(pattern), boost::end (pattern));
return kmp (boost::begin (corpus), boost::end (corpus));
}
// Creator functions -- take a pattern range, return an object
template <typename Range>
boost::algorithm::knuth_morris_pratt<typename boost::range_iterator<const Range>::type>
make_knuth_morris_pratt ( const Range &r ) {
return boost::algorithm::knuth_morris_pratt
<typename boost::range_iterator<const Range>::type> (boost::begin(r), boost::end(r));
}
template <typename Range>
boost::algorithm::knuth_morris_pratt<typename boost::range_iterator<Range>::type>
make_knuth_morris_pratt ( Range &r ) {
return boost::algorithm::knuth_morris_pratt
<typename boost::range_iterator<Range>::type> (boost::begin(r), boost::end(r));
}
}}

View File

@ -228,13 +228,13 @@ namespace boost {
//! Find head algorithm
/*!
Get the head of the input. Head is a prefix of the string of the
given size. If the input is shorter then required, whole input is considered
given size. If the input is shorter then required, whole input if considered
to be the head.
\param Input An input string
\param N Length of the head
For N>=0, at most N characters are extracted.
For N<0, at most size(Input)-|N| characters are extracted.
For N<0, size(Input)-|N| characters are extracted.
\return
An \c iterator_range delimiting the match.
Returned iterator is either \c Range1T::iterator or
@ -258,13 +258,13 @@ namespace boost {
//! Find tail algorithm
/*!
Get the tail of the input. Tail is a suffix of the string of the
given size. If the input is shorter then required, whole input is considered
given size. If the input is shorter then required, whole input if considered
to be the tail.
\param Input An input string
\param N Length of the tail.
For N>=0, at most N characters are extracted.
For N<0, at most size(Input)-|N| characters are extracted.
For N<0, size(Input)-|N| characters are extracted.
\return
An \c iterator_range delimiting the match.
Returned iterator is either \c RangeT::iterator or

View File

@ -60,7 +60,7 @@ namespace boost {
a match).
\param Input A container which will be searched.
\param Finder A Finder object used for searching
\return A reference to the result
\return A reference the result
\note Prior content of the result will be overwritten.
*/
@ -122,7 +122,7 @@ namespace boost {
Each match is used as a separator of segments. These segments are then
returned in the result.
\param Result A 'container container' to contain the result of search.
\param Result A 'container container' to container the result of search.
Both outer and inner container must have constructor taking a pair
of iterators as an argument.
Typical type of the result is
@ -131,7 +131,7 @@ namespace boost {
a match).
\param Input A container which will be searched.
\param Finder A finder object used for searching
\return A reference to the result
\return A reference the result
\note Prior content of the result will be overwritten.
*/

View File

@ -1,13 +0,0 @@
<html>
<head>
<meta http-equiv="refresh" content="0; URL=doc/html/index.html">
</head>
<body>
Automatic redirection failed, please go to
<a href="doc/html/index.html">doc/html/index.html</a> &nbsp;<hr>
<p>© Copyright Marshall Clow, 2012</p>
<p>Distributed under the Boost Software License, Version 1.0. (See accompanying
file <a href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or copy
at <a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/LICENSE_1_0.txt</a>)</p>
</body>
</html>

View File

@ -130,17 +130,17 @@
string str1("command.com");
cout
&lt;&lt; str1
&lt;&lt; (is_executable(str1)? "is": "is not")
&lt;&lt; (is_executable("command.com")? "is": "is not")
&lt;&lt; "an executable"
&lt;&lt; endl; // prints "command.com is an executable"
//..
char text1[]="hello";
char text1[]="hello world!";
cout
&lt;&lt; text1
&lt;&lt; (all( text1, is_lower() )? " is": " is not")
&lt;&lt; (all( text1, is_lower() )? "is": "is not")
&lt;&lt; " written in the lower case"
&lt;&lt; endl; // prints "hello is written in the lower case"
&lt;&lt; endl; // prints "hello world! is written in the lower case"
</programlisting>
<para>
The predicates determine whether if a substring is contained in the input string
@ -149,11 +149,6 @@
simply contains the substring or if both strings are equal. See the reference for
<headername>boost/algorithm/string/predicate.hpp</headername> for more details.
</para>
<para>
Note that if we had used "hello world" as the input to the test, it would have
output "hello world is not written in the lower case" because the space in the
input string is not a lower case letter.
</para>
<para>
In addition the algorithm <functionname>all()</functionname> checks
all elements of a container to satisfy a condition specified by a predicate.
@ -168,7 +163,7 @@
<title>Trimming</title>
<para>
When parsing the input from a user, strings often have unwanted leading or trailing
When parsing the input from a user, strings usually have unwanted leading or trailing
characters. To get rid of them, we need trim functions:
</para>
<programlisting>

8
test/Jamfile.v2 Normal file → Executable file
View File

@ -16,7 +16,6 @@ import testing ;
[ run search_test1.cpp : : : : search_test1 ]
[ run search_test2.cpp : : : : search_test2 ]
[ run search_test3.cpp : : : : search_test3 ]
[ run search_test4.cpp : : : : search_test4 ]
[ compile-fail search_fail1.cpp : : : : ]
[ compile-fail search_fail2.cpp : : : : ]
[ compile-fail search_fail3.cpp : : : : ]
@ -32,7 +31,6 @@ import testing ;
[ run ordered_test.cpp : : : : ordered_test ]
[ run find_if_not_test1.cpp : : : : find_if_not_test1 ]
[ run copy_if_test1.cpp : : : : copy_if_test1 ]
[ run copy_n_test1.cpp : : : : copy_n_test1 ]
[ run iota_test1.cpp : : : : iota_test1 ]
@ -41,12 +39,6 @@ import testing ;
[ run is_partitioned_test1.cpp : : : : is_partitioned_test1 ]
[ run partition_copy_test1.cpp : : : : partition_copy_test1 ]
# Hex tests
[ run hex_test1.cpp : : : : hex_test1 ]
[ run hex_test2.cpp : : : : hex_test2 ]
[ run hex_test3.cpp : : : : hex_test3 ]
[ run hex_test4.cpp : : : : hex_test4 ]
[ compile-fail hex_fail1.cpp ]
;
}

0
test/clamp_test.cpp Normal file → Executable file
View File

View File

@ -1,87 +0,0 @@
/*
Copyright (c) Marshall Clow 2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
*/
#include <boost/config.hpp>
#include <boost/algorithm/cxx11/copy_if.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <algorithm>
#include <string>
#include <iostream>
#include <vector>
#include <list>
#include <boost/algorithm/cxx11/all_of.hpp>
namespace ba = boost::algorithm;
// namespace ba = boost;
bool is_true ( int v ) { return true; }
bool is_false ( int v ) { return false; }
bool is_even ( int v ) { return v % 2 == 0; }
bool is_odd ( int v ) { return v % 2 == 1; }
template <typename Container>
void test_sequence ( Container const &c ) {
typedef typename Container::value_type value_type;
std::vector<value_type> v;
// None of the elements
v.clear ();
ba::copy_if ( c.begin (), c.end (), back_inserter ( v ), is_false);
BOOST_CHECK ( v.size () == 0 );
v.clear ();
ba::copy_if ( c, back_inserter ( v ), is_false);
BOOST_CHECK ( v.size () == 0 );
// All the elements
v.clear ();
ba::copy_if ( c.begin (), c.end (), back_inserter ( v ), is_true);
BOOST_CHECK ( v.size () == c.size ());
BOOST_CHECK ( std::equal ( c.begin (), c.end (), v.begin ()));
v.clear ();
ba::copy_if ( c, back_inserter ( v ), is_true);
BOOST_CHECK ( v.size () == c.size ());
BOOST_CHECK ( v.size () == c.size ());
BOOST_CHECK ( std::equal ( c.begin (), c.end (), v.begin ()));
// Some of the elements
v.clear ();
ba::copy_if ( c.begin (), c.end (), back_inserter ( v ), is_even );
BOOST_CHECK ( v.size () == std::count_if ( c.begin (), c.end (), is_even ));
BOOST_CHECK ( ba::all_of ( v.begin (), v.end (), is_even ));
v.clear ();
ba::copy_if ( c, back_inserter ( v ), is_even );
BOOST_CHECK ( v.size () == std::count_if ( c.begin (), c.end (), is_even ));
BOOST_CHECK ( ba::all_of ( v.begin (), v.end (), is_even ));
}
void test_sequence1 () {
std::vector<int> v;
for ( int i = 5; i < 15; ++i )
v.push_back ( i );
test_sequence ( v );
std::list<int> l;
for ( int i = 25; i > 15; --i )
l.push_back ( i );
test_sequence ( l );
}
int test_main( int , char* [] )
{
test_sequence1 ();
return 0;
}

View File

@ -22,60 +22,60 @@ namespace ba = boost::algorithm;
template <typename Container>
void test_sequence ( Container const &c ) {
typedef typename Container::value_type value_type;
std::vector<value_type> v;
// Copy zero elements
v.clear ();
ba::copy_n ( c.begin (), 0, back_inserter ( v ));
BOOST_CHECK ( v.size () == 0 );
ba::copy_n ( c.begin (), 0U, back_inserter ( v ));
BOOST_CHECK ( v.size () == 0 );
typedef typename Container::value_type value_type;
std::vector<value_type> v;
// Copy zero elements
v.clear ();
ba::copy_n ( c.begin (), 0, back_inserter ( v ));
BOOST_CHECK ( v.size () == 0 );
ba::copy_n ( c.begin (), 0U, back_inserter ( v ));
BOOST_CHECK ( v.size () == 0 );
if ( c.size () > 0 ) {
// Just one element
v.clear ();
ba::copy_n ( c.begin (), 1, back_inserter ( v ));
BOOST_CHECK ( v.size () == 1 );
BOOST_CHECK ( v[0] == *c.begin ());
v.clear ();
ba::copy_n ( c.begin (), 1U, back_inserter ( v ));
BOOST_CHECK ( v.size () == 1 );
BOOST_CHECK ( v[0] == *c.begin ());
if ( c.size () > 0 ) {
// Just one element
v.clear ();
ba::copy_n ( c.begin (), 1, back_inserter ( v ));
BOOST_CHECK ( v.size () == 1 );
BOOST_CHECK ( v[0] == *c.begin ());
v.clear ();
ba::copy_n ( c.begin (), 1U, back_inserter ( v ));
BOOST_CHECK ( v.size () == 1 );
BOOST_CHECK ( v[0] == *c.begin ());
// Half the elements
v.clear ();
ba::copy_n ( c.begin (), c.size () / 2, back_inserter ( v ));
BOOST_CHECK ( v.size () == c.size () / 2);
BOOST_CHECK ( std::equal ( v.begin (), v.end (), c.begin ()));
// Half the elements
v.clear ();
ba::copy_n ( c.begin (), c.size () / 2, back_inserter ( v ));
BOOST_CHECK ( v.size () == c.size () / 2);
BOOST_CHECK ( std::equal ( v.begin (), v.end (), c.begin ()));
// Half the elements + 1
v.clear ();
ba::copy_n ( c.begin (), c.size () / 2 + 1, back_inserter ( v ));
BOOST_CHECK ( v.size () == c.size () / 2 + 1 );
BOOST_CHECK ( std::equal ( v.begin (), v.end (), c.begin ()));
// All the elements
v.clear ();
ba::copy_n ( c.begin (), c.size (), back_inserter ( v ));
BOOST_CHECK ( v.size () == c.size ());
BOOST_CHECK ( std::equal ( v.begin (), v.end (), c.begin ()));
}
}
// Half the elements + 1
v.clear ();
ba::copy_n ( c.begin (), c.size () / 2 + 1, back_inserter ( v ));
BOOST_CHECK ( v.size () == c.size () / 2 + 1 );
BOOST_CHECK ( std::equal ( v.begin (), v.end (), c.begin ()));
// All the elements
v.clear ();
ba::copy_n ( c.begin (), c.size (), back_inserter ( v ));
BOOST_CHECK ( v.size () == c.size ());
BOOST_CHECK ( std::equal ( v.begin (), v.end (), c.begin ()));
}
}
void test_sequence1 () {
std::vector<int> v;
for ( int i = 5; i < 15; ++i )
v.push_back ( i );
test_sequence ( v );
std::list<int> l;
for ( int i = 25; i > 15; --i )
l.push_back ( i );
test_sequence ( l );
}
std::vector<int> v;
for ( int i = 5; i < 15; ++i )
v.push_back ( i );
test_sequence ( v );
std::list<int> l;
for ( int i = 25; i > 15; --i )
l.push_back ( i );
test_sequence ( l );
}
int test_main( int , char* [] )

0
test/empty_search_test.cpp Normal file → Executable file
View File

View File

@ -22,18 +22,18 @@ namespace ba = boost::algorithm;
template <typename Container>
typename Container::iterator offset_to_iter ( Container &v, int offset ) {
typename Container::iterator retval;
if ( offset >= 0 ) {
retval = v.begin ();
std::advance ( retval, offset );
}
else {
retval = v.end ();
std::advance ( retval, offset + 1 );
}
return retval;
}
typename Container::iterator retval;
if ( offset >= 0 ) {
retval = v.begin ();
std::advance ( retval, offset );
}
else {
retval = v.end ();
std::advance ( retval, offset + 1 );
}
return retval;
}
template <typename Container, typename Predicate>
void test_sequence ( Container &v, Predicate comp, int expected ) {
@ -71,7 +71,7 @@ void test_sequence1 () {
test_sequence ( v, less_than<int>(10), 5 );
test_sequence ( v, less_than<int>(99), -1 ); // all elements satisfy
// With bidirectional iterators.
// With bidirectional iterators.
std::list<int> l;
for ( int i = 5; i < 15; ++i )
l.push_back ( i );

View File

@ -1,25 +0,0 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
#include <vector>
// should not compile: vector is not an integral type
int test_main( int , char* [] )
{
std::vector<float> v;
std::string out;
boost::algorithm::unhex ( out, std::back_inserter(v));
return 0;
}

View File

@ -1,154 +0,0 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
template<typename String>
void test_to_hex ( const typename String::value_type ** tests ) {
for ( const typename String::value_type **p = tests; *p; p++ ) {
String arg, argh, one, two, three, four;
arg.assign ( *p );
boost::algorithm::hex ( *p, std::back_inserter ( one ));
boost::algorithm::hex ( arg, std::back_inserter ( two ));
boost::algorithm::hex ( arg.begin (), arg.end (), std::back_inserter ( three ));
four = boost::algorithm::hex ( arg );
BOOST_CHECK ( one == two );
BOOST_CHECK ( one == three );
BOOST_CHECK ( one == four );
argh = one;
one.clear (); two.clear (); three.clear (); four.clear ();
boost::algorithm::unhex ( argh.c_str (), std::back_inserter ( one ));
boost::algorithm::unhex ( argh, std::back_inserter ( two ));
boost::algorithm::unhex ( argh.begin (), argh.end (), std::back_inserter ( three ));
four = boost::algorithm::unhex ( argh );
BOOST_CHECK ( one == two );
BOOST_CHECK ( one == three );
BOOST_CHECK ( one == four );
BOOST_CHECK ( one == arg );
}
}
template<typename String>
void test_from_hex_success ( const typename String::value_type ** tests ) {
for ( const typename String::value_type **p = tests; *p; p++ ) {
String arg, argh, one, two, three, four;
arg.assign ( *p );
boost::algorithm::unhex ( *p, std::back_inserter ( one ));
boost::algorithm::unhex ( arg, std::back_inserter ( two ));
boost::algorithm::unhex ( arg.begin (), arg.end (), std::back_inserter ( three ));
four = boost::algorithm::unhex ( arg );
BOOST_CHECK ( one == two );
BOOST_CHECK ( one == three );
BOOST_CHECK ( one == four );
argh = one;
one.clear (); two.clear (); three.clear (); four.clear ();
boost::algorithm::hex ( argh.c_str (), std::back_inserter ( one ));
boost::algorithm::hex ( argh, std::back_inserter ( two ));
boost::algorithm::hex ( argh.begin (), argh.end (), std::back_inserter ( three ));
four = boost::algorithm::hex ( argh );
BOOST_CHECK ( one == two );
BOOST_CHECK ( one == three );
BOOST_CHECK ( one == four );
BOOST_CHECK ( one == arg );
}
}
template<typename String>
void test_from_hex_failure ( const typename String::value_type ** tests ) {
int num_catches;
for ( const typename String::value_type **p = tests; *p; p++ ) {
String arg, one;
arg.assign ( *p );
num_catches = 0;
try { boost::algorithm::unhex ( *p, std::back_inserter ( one )); }
catch ( const boost::algorithm::hex_decode_error & /*ex*/ ) { num_catches++; }
try { boost::algorithm::unhex ( arg, std::back_inserter ( one )); }
catch ( const boost::algorithm::hex_decode_error & /*ex*/ ) { num_catches++; }
try { boost::algorithm::unhex ( arg.begin (), arg.end (), std::back_inserter ( one )); }
catch ( const boost::algorithm::hex_decode_error & /*ex*/ ) { num_catches++; }
BOOST_CHECK ( num_catches == 3 );
}
}
const char *tohex [] = {
"",
"a",
"\001",
"12",
"asdfadsfsad",
"01234567890ABCDEF",
NULL // End of the list
};
const wchar_t *tohex_w [] = {
L"",
L"a",
L"\001",
L"12",
L"asdfadsfsad",
L"01234567890ABCDEF",
NULL // End of the list
};
const char *fromhex [] = {
"20",
"2122234556FF",
NULL // End of the list
};
const wchar_t *fromhex_w [] = {
L"00101020",
L"2122234556FF3456",
NULL // End of the list
};
const char *fromhex_fail [] = {
"2",
"H",
"234",
"21222G4556FF",
NULL // End of the list
};
const wchar_t *fromhex_fail_w [] = {
L"2",
L"12",
L"H",
L"234",
L"21222G4556FF",
NULL // End of the list
};
int test_main( int , char* [] )
{
test_to_hex<std::string> ( tohex );
test_from_hex_success<std::string> ( fromhex );
test_from_hex_failure<std::string> ( fromhex_fail );
test_to_hex<std::wstring> ( tohex_w );
test_from_hex_success<std::wstring> ( fromhex_w );
test_from_hex_failure<std::wstring> ( fromhex_fail_w );
return 0;
}

View File

@ -1,137 +0,0 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
Test non-string cases; vector and list
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
#include <deque>
#include <list>
const char *tohex [] = {
"",
"a",
"\001",
"12",
"asdfadsfsad",
"01234567890ABCDEF",
NULL // End of the list
};
void test_to_hex () {
for ( const char **p = tohex; *p; p++ ) {
std::deque<char> arg, argh;
std::list<char> one, two, three;
arg.assign ( *p, *p + strlen (*p));
boost::algorithm::hex ( *p, std::back_inserter ( one ));
boost::algorithm::hex ( arg, std::back_inserter ( two ));
boost::algorithm::hex ( arg.begin (), arg.end (), std::back_inserter ( three ));
BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
std::copy ( one.begin (), one.end (), std::back_inserter ( argh ));
one.clear (); two.clear (); three.clear ();
// boost::algorithm::unhex ( argh.c_str (), std::back_inserter ( one ));
boost::algorithm::unhex ( argh, std::back_inserter ( two ));
boost::algorithm::unhex ( argh.begin (), argh.end (), std::back_inserter ( three ));
// BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), arg.begin ()));
}
// Again, with a front_inserter
for ( const char **p = tohex; *p; p++ ) {
std::deque<char> arg, argh;
std::list<char> one, two, three;
arg.assign ( *p, *p + strlen (*p));
boost::algorithm::hex ( *p, std::front_inserter ( one ));
boost::algorithm::hex ( arg, std::front_inserter ( two ));
boost::algorithm::hex ( arg.begin (), arg.end (), std::front_inserter ( three ));
BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
// Copy, reversing
std::copy ( one.begin (), one.end (), std::front_inserter ( argh ));
one.clear (); two.clear (); three.clear ();
// boost::algorithm::unhex ( argh.c_str (), std::front_inserter ( one ));
boost::algorithm::unhex ( argh, std::front_inserter ( two ));
boost::algorithm::unhex ( argh.begin (), argh.end (), std::front_inserter ( three ));
// BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), arg.rbegin ())); // reverse
}
}
const char *fromhex [] = {
"20",
"2122234556FF",
NULL // End of the list
};
void test_from_hex_success () {
for ( const char **p = fromhex; *p; p++ ) {
std::deque<char> arg, argh;
std::list<char> one, two, three;
arg.assign ( *p, *p + strlen (*p));
boost::algorithm::unhex ( *p, std::back_inserter ( one ));
boost::algorithm::unhex ( arg, std::back_inserter ( two ));
boost::algorithm::unhex ( arg.begin (), arg.end (), std::back_inserter ( three ));
BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
std::copy ( one.begin (), one.end (), std::back_inserter ( argh ));
one.clear (); two.clear (); three.clear ();
// boost::algorithm::hex ( argh.c_str (), std::back_inserter ( one ));
boost::algorithm::hex ( argh, std::back_inserter ( two ));
boost::algorithm::hex ( argh.begin (), argh.end (), std::back_inserter ( three ));
// BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), arg.begin ()));
}
// Again, with a front_inserter
for ( const char **p = fromhex; *p; p++ ) {
std::deque<char> arg, argh;
std::list<char> one, two, three;
arg.assign ( *p, *p + strlen (*p));
boost::algorithm::unhex ( *p, std::front_inserter ( one ));
boost::algorithm::unhex ( arg, std::front_inserter ( two ));
boost::algorithm::unhex ( arg.begin (), arg.end (), std::front_inserter ( three ));
BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
// Copy, reversing
std::copy ( one.begin (), one.end (), std::front_inserter ( argh ));
one.clear (); two.clear (); three.clear ();
// boost::algorithm::hex ( argh.c_str (), std::front_inserter ( one ));
boost::algorithm::hex ( argh, std::front_inserter ( two ));
boost::algorithm::hex ( argh.begin (), argh.end (), std::front_inserter ( three ));
// BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), arg.rbegin ())); // reversed
}
}
int test_main( int , char* [] )
{
test_to_hex ();
test_from_hex_success ();
return 0;
}

View File

@ -1,123 +0,0 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
Try ostream_iterators
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
#include <deque>
#include <list>
template <typename char_type>
void test_to_hex ( const char_type ** tests ) {
typedef std::basic_string<char_type> String;
typedef std::basic_ostringstream<char_type> Stream;
typedef std::ostream_iterator<char_type, char_type> Iter;
for ( const char_type **p = tests; *p; p++ ) {
String arg, argh;
Stream one, two, three;
arg.assign ( *p );
boost::algorithm::hex ( *p, Iter ( one ));
boost::algorithm::hex ( arg, Iter ( two ));
boost::algorithm::hex ( arg.begin (), arg.end (), Iter ( three ));
boost::algorithm::hex ( arg );
BOOST_CHECK ( one.str () == two.str ());
BOOST_CHECK ( one.str () == three.str ());
argh = one.str ();
one.str (String()); two.str (String()); three.str (String());
boost::algorithm::unhex ( argh.c_str (), Iter ( one ));
boost::algorithm::unhex ( argh, Iter ( two ));
boost::algorithm::unhex ( argh.begin (), argh.end (), Iter ( three ));
BOOST_CHECK ( one.str () == two.str ());
BOOST_CHECK ( one.str () == three.str ());
BOOST_CHECK ( one.str () == arg );
}
}
template <typename char_type>
void test_from_hex_success ( const char_type ** tests ) {
typedef std::basic_string<char_type> String;
typedef std::basic_ostringstream<char_type> Stream;
typedef std::ostream_iterator<char_type, char_type> Iter;
for ( const char_type **p = tests; *p; p++ ) {
String arg, argh;
Stream one, two, three;
arg.assign ( *p );
boost::algorithm::unhex ( *p, Iter ( one ));
boost::algorithm::unhex ( arg, Iter ( two ));
boost::algorithm::unhex ( arg.begin (), arg.end (), Iter ( three ));
BOOST_CHECK ( one.str () == two.str ());
BOOST_CHECK ( one.str () == three.str ());
argh = one.str ();
one.str (String()); two.str (String()); three.str (String());
boost::algorithm::hex ( argh.c_str (), Iter ( one ));
boost::algorithm::hex ( argh, Iter ( two ));
boost::algorithm::hex ( argh.begin (), argh.end (), Iter ( three ));
BOOST_CHECK ( one.str () == two.str ());
BOOST_CHECK ( one.str () == three.str ());
BOOST_CHECK ( one.str () == arg );
}
}
const char *tohex [] = {
"",
"a",
"\001",
"12",
"asdfadsfsad",
"01234567890ABCDEF",
NULL // End of the list
};
const wchar_t *tohex_w [] = {
L"",
L"a",
L"\001",
L"12",
L"asdfadsfsad",
L"01234567890ABCDEF",
NULL // End of the list
};
const char *fromhex [] = {
"20",
"2122234556FF",
NULL // End of the list
};
const wchar_t *fromhex_w [] = {
L"11223320",
L"21222345010256FF",
NULL // End of the list
};
int test_main( int , char* [] )
{
test_to_hex ( tohex );
test_to_hex ( tohex_w );
test_from_hex_success ( fromhex );
test_from_hex_success ( fromhex_w );
return 0;
}

View File

@ -1,145 +0,0 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
Try ostream_iterators
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
namespace ba = boost::algorithm;
void test_short_input1 () {
std::string s;
try { ba::unhex ( std::string ( "A" ), std::back_inserter(s)); }
catch ( const std::exception &ex ) { return; }
BOOST_TEST_MESSAGE ( "Failed to catch std::exception in test_short_input1" );
BOOST_CHECK ( false );
}
void test_short_input2 () {
std::string s;
try { ba::unhex ( std::string ( "A" ), std::back_inserter(s)); }
catch ( const ba::hex_decode_error &ex ) { return; }
BOOST_TEST_MESSAGE ( "Failed to catch ba::hex_decode_error in test_short_input2" );
BOOST_CHECK ( false );
}
void test_short_input3 () {
std::string s;
try { ba::unhex ( std::string ( "A" ), std::back_inserter(s)); }
catch ( const ba::not_enough_input &ex ) { return; }
BOOST_TEST_MESSAGE ( "Failed to catch ba::not_enough_input in test_short_input3" );
BOOST_CHECK ( false );
}
// Make sure that the right thing is thrown
void test_short_input4 () {
std::string s;
try { ba::unhex ( std::string ( "A" ), std::back_inserter(s)); }
catch ( const ba::non_hex_input &ex ) { BOOST_CHECK ( false ); }
catch ( const ba::not_enough_input &ex ) { return; }
catch ( ... ) { BOOST_CHECK ( false ); }
BOOST_CHECK ( false );
}
// Make sure that the right thing is thrown
void test_short_input5 () {
std::string s;
try { ba::unhex ( "A", std::back_inserter(s)); }
catch ( const ba::non_hex_input &ex ) { BOOST_CHECK ( false ); }
catch ( const ba::not_enough_input &ex ) { return; }
catch ( ... ) { BOOST_CHECK ( false ); }
BOOST_CHECK ( false );
}
void test_short_input () {
// BOOST_TEST_MESSAGE ( "Short input tests for boost::algorithm::unhex" );
test_short_input1 ();
test_short_input2 ();
test_short_input3 ();
test_short_input4 ();
test_short_input5 ();
}
void test_nonhex_input1 () {
std::string s;
try { ba::unhex ( "01234FG1234", std::back_inserter(s)); }
catch ( const std::exception &ex ) {
BOOST_CHECK ( 'G' == *boost::get_error_info<ba::bad_char>(ex));
return;
}
catch ( ... ) {}
BOOST_TEST_MESSAGE ( "Failed to catch std::exception in test_nonhex_input1" );
BOOST_CHECK ( false );
}
void test_nonhex_input2 () {
std::string s;
try { ba::unhex ( "012Z4FA1234", std::back_inserter(s)); }
catch ( const ba::hex_decode_error &ex ) {
BOOST_CHECK ( 'Z' == *boost::get_error_info<ba::bad_char>(ex));
return;
}
catch ( ... ) {}
BOOST_TEST_MESSAGE ( "Failed to catch ba::hex_decode_error in test_nonhex_input2" );
BOOST_CHECK ( false );
}
void test_nonhex_input3 () {
std::string s;
try { ba::unhex ( "01234FA12Q4", std::back_inserter(s)); }
catch ( const ba::non_hex_input &ex ) {
BOOST_CHECK ( 'Q' == *boost::get_error_info<ba::bad_char>(ex));
return;
}
catch ( ... ) {}
BOOST_TEST_MESSAGE ( "Failed to catch ba::non_hex_input in test_nonhex_input3" );
BOOST_CHECK ( false );
}
// Make sure that the right thing is thrown
void test_nonhex_input4 () {
std::string s;
try { ba::unhex ( "P1234FA1234", std::back_inserter(s)); }
catch ( const ba::not_enough_input &ex ) { BOOST_CHECK ( false ); }
catch ( const ba::non_hex_input &ex ) { return; }
catch ( ... ) { BOOST_CHECK ( false ); }
BOOST_CHECK ( false );
}
void test_nonhex_input () {
// BOOST_TEST_MESSAGE ( "Non hex input tests for for boost::algorithm::unhex" );
test_nonhex_input1 ();
test_nonhex_input2 ();
test_nonhex_input3 ();
test_nonhex_input4 ();
}
int test_main( int , char* [] )
{
test_short_input ();
test_nonhex_input ();
return 0;
}

View File

@ -16,60 +16,60 @@
#include <vector>
#include <list>
// Test to make sure a sequence is "correctly formed"; i.e, ascending by one
// Test to make sure a sequence is "correctly formed"; i.e, ascending by one
template <typename Iterator, typename T>
bool test_iota_results ( Iterator first, Iterator last, T initial_value ) {
if ( first == last ) return true;
if ( initial_value != *first ) return false;
Iterator prev = first;
while ( ++first != last ) {
if (( *first - *prev ) != 1 )
return false;
prev = first;
}
return true;
}
if ( first == last ) return true;
if ( initial_value != *first ) return false;
Iterator prev = first;
while ( ++first != last ) {
if (( *first - *prev ) != 1 )
return false;
prev = first;
}
return true;
}
template <typename Range, typename T>
bool test_iota_results ( const Range &r, T initial_value ) {
return test_iota_results (boost::begin (r), boost::end (r), initial_value );
return test_iota_results (boost::begin (r), boost::end (r), initial_value );
}
void test_ints () {
std::vector<int> v;
std::list<int> l;
std::vector<int> v;
std::list<int> l;
v.clear (); v.reserve ( 10 );
boost::algorithm::iota ( v.begin (), v.end (), 23 );
BOOST_CHECK ( test_iota_results ( v.begin (), v.end (), 23 ));
v.clear (); v.reserve ( 19 );
boost::algorithm::iota ( v, 18 );
BOOST_CHECK ( test_iota_results ( v, 18 ));
v.clear ();
boost::algorithm::iota_n ( std::back_inserter(v), 99, 20 );
BOOST_CHECK ( test_iota_results ( v, 99 ));
v.clear (); v.reserve ( 10 );
boost::algorithm::iota ( v.begin (), v.end (), 23 );
BOOST_CHECK ( test_iota_results ( v.begin (), v.end (), 23 ));
v.clear (); v.reserve ( 19 );
boost::algorithm::iota ( v, 18 );
BOOST_CHECK ( test_iota_results ( v, 18 ));
v.clear ();
boost::algorithm::iota_n ( std::back_inserter(v), 99, 20 );
BOOST_CHECK ( test_iota_results ( v, 99 ));
/*
l.clear (); l.reserve ( 5 );
boost::algorithm::iota ( l.begin (), l.end (), 123 );
BOOST_CHECK ( test_iota_results ( l.begin (), l.end (), 123 ));
l.clear (); l.reserve ( 9 );
boost::algorithm::iota ( l.begin (), l.end (), 87 );
BOOST_CHECK ( test_iota_results ( l.begin (), l.end (), 87 ));
l.clear (); l.reserve ( 5 );
boost::algorithm::iota ( l.begin (), l.end (), 123 );
BOOST_CHECK ( test_iota_results ( l.begin (), l.end (), 123 ));
l.clear (); l.reserve ( 9 );
boost::algorithm::iota ( l.begin (), l.end (), 87 );
BOOST_CHECK ( test_iota_results ( l.begin (), l.end (), 87 ));
*/
l.clear ();
boost::algorithm::iota_n ( std::back_inserter(l), 99, 20 );
BOOST_CHECK ( test_iota_results ( l, 99 ));
l.clear ();
boost::algorithm::iota_n ( std::front_inserter(l), 123, 20 );
BOOST_CHECK ( test_iota_results ( l.rbegin (), l.rend (), 123 ));
}
l.clear ();
boost::algorithm::iota_n ( std::back_inserter(l), 99, 20 );
BOOST_CHECK ( test_iota_results ( l, 99 ));
l.clear ();
boost::algorithm::iota_n ( std::front_inserter(l), 123, 20 );
BOOST_CHECK ( test_iota_results ( l.rbegin (), l.rend (), 123 ));
}
int test_main( int , char* [] )

View File

@ -40,19 +40,19 @@ void test_sequence1 () {
v.clear ();
for ( int i = 5; i < 15; ++i )
v.push_back ( i );
BOOST_CHECK ( ba::is_partitioned ( v, less_than<int>(3))); // no elements
BOOST_CHECK ( ba::is_partitioned ( v, less_than<int>(6))); // only the first element
BOOST_CHECK ( ba::is_partitioned ( v, less_than<int>(10))); // in the middle somewhere
BOOST_CHECK ( ba::is_partitioned ( v, less_than<int>(99))); // all elements satisfy
BOOST_CHECK ( ba::is_partitioned ( v, less_than<int>(3))); // no elements
BOOST_CHECK ( ba::is_partitioned ( v, less_than<int>(6))); // only the first element
BOOST_CHECK ( ba::is_partitioned ( v, less_than<int>(10))); // in the middle somewhere
BOOST_CHECK ( ba::is_partitioned ( v, less_than<int>(99))); // all elements satisfy
// With bidirectional iterators.
// With bidirectional iterators.
std::list<int> l;
for ( int i = 5; i < 15; ++i )
l.push_back ( i );
BOOST_CHECK ( ba::is_partitioned ( l.begin (), l.end (), less_than<int>(3))); // no elements
BOOST_CHECK ( ba::is_partitioned ( l.begin (), l.end (), less_than<int>(6))); // only the first element
BOOST_CHECK ( ba::is_partitioned ( l.begin (), l.end (), less_than<int>(10))); // in the middle somewhere
BOOST_CHECK ( ba::is_partitioned ( l.begin (), l.end (), less_than<int>(99))); // all elements satisfy
BOOST_CHECK ( ba::is_partitioned ( l.begin (), l.end (), less_than<int>(3))); // no elements
BOOST_CHECK ( ba::is_partitioned ( l.begin (), l.end (), less_than<int>(6))); // only the first element
BOOST_CHECK ( ba::is_partitioned ( l.begin (), l.end (), less_than<int>(10))); // in the middle somewhere
BOOST_CHECK ( ba::is_partitioned ( l.begin (), l.end (), less_than<int>(99))); // all elements satisfy
}

View File

@ -12,7 +12,7 @@
#include <algorithm>
#include <iostream>
#include <boost/algorithm/cxx11/is_sorted.hpp>
#include <boost/algorithm/cxx11/ordered.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
using namespace boost;
@ -29,54 +29,6 @@ namespace ba = boost::algorithm;
static void
test_ordered(void)
{
const int strictlyIncreasingValues[] = { 1, 2, 3, 4, 5 };
const int randomValues[] = { 3, 6, 1, 2, 7 };
const int constantValues[] = { 1, 2, 2, 2, 5 };
int nonConstantArray[] = { 1, 2, 2, 2, 5 };
const int inOrderUntilTheEnd [] = { 0, 1, 2, 3, 4, 5, 6, 7, 6 };
// Begin/end checks
BOOST_CHECK ( ba::is_sorted (b_e(strictlyIncreasingValues)));
BOOST_CHECK ( !ba::is_sorted (b_e(randomValues)));
BOOST_CHECK ( ba::is_sorted (b_e(strictlyIncreasingValues), std::less<int>()));
BOOST_CHECK ( !ba::is_sorted (b_e(strictlyIncreasingValues), std::greater<int>()));
// Range checks
BOOST_CHECK ( ba::is_sorted (a_range(strictlyIncreasingValues)));
BOOST_CHECK ( !ba::is_sorted (a_range(randomValues)));
BOOST_CHECK ( ba::is_sorted (a_range(strictlyIncreasingValues), std::less<int>()));
BOOST_CHECK ( !ba::is_sorted (a_range(strictlyIncreasingValues), std::greater<int>()));
BOOST_CHECK ( ba::is_sorted_until ( b_e(strictlyIncreasingValues)) == a_end(strictlyIncreasingValues));
BOOST_CHECK ( ba::is_sorted_until ( b_e(strictlyIncreasingValues), std::less<int>()) == a_end(strictlyIncreasingValues));
BOOST_CHECK ( ba::is_sorted_until ( a_range(strictlyIncreasingValues)) == boost::end(strictlyIncreasingValues));
BOOST_CHECK ( ba::is_sorted_until ( a_range(strictlyIncreasingValues), std::less<int>()) == boost::end(strictlyIncreasingValues));
// Check for const and non-const arrays
BOOST_CHECK ( ba::is_sorted_until ( b_e(constantValues), std::less<int>()) == a_end(constantValues));
BOOST_CHECK ( ba::is_sorted_until ( a_range(constantValues), std::less<int>()) == boost::end(constantValues));
BOOST_CHECK ( ba::is_sorted_until ( b_e(nonConstantArray), std::less<int>()) == a_end(nonConstantArray));
BOOST_CHECK ( ba::is_sorted_until ( a_range(nonConstantArray), std::less<int>()) == boost::end(nonConstantArray));
BOOST_CHECK ( ba::is_sorted_until ( b_e(randomValues), std::less<int>()) == &randomValues[2] );
BOOST_CHECK ( ba::is_sorted_until ( b_e(randomValues)) == &randomValues[2] );
BOOST_CHECK ( ba::is_sorted_until ( a_range(randomValues), std::less<int>()) == &randomValues[2] );
BOOST_CHECK ( ba::is_sorted_until ( a_range(randomValues)) == &randomValues[2] );
BOOST_CHECK ( ba::is_sorted_until ( a_range(inOrderUntilTheEnd), std::less<int>()) == &inOrderUntilTheEnd[8] );
BOOST_CHECK ( ba::is_sorted_until ( a_range(inOrderUntilTheEnd)) == &inOrderUntilTheEnd[8] );
// For zero and one element collections, the comparison predicate should never be called
BOOST_CHECK ( ba::is_sorted_until ( a_begin(randomValues), a_begin(randomValues), std::equal_to<int>()) == a_begin(randomValues));
BOOST_CHECK ( ba::is_sorted_until ( a_begin(randomValues), a_begin(randomValues)) == a_begin(randomValues));
BOOST_CHECK ( ba::is_sorted_until ( a_begin(randomValues), a_begin(randomValues) + 1, std::equal_to<int>()) == a_begin(randomValues) + 1);
BOOST_CHECK ( ba::is_sorted_until ( a_begin(randomValues), a_begin(randomValues) + 1 ) == a_begin(randomValues) + 1);
}
static void
test_increasing_decreasing(void)
{
const int strictlyIncreasingValues[] = { 1, 2, 3, 4, 5 };
const int strictlyDecreasingValues[] = { 9, 8, 7, 6, 5 };
@ -84,6 +36,8 @@ test_increasing_decreasing(void)
const int decreasingValues[] = { 9, 7, 7, 7, 5 };
const int randomValues[] = { 3, 6, 1, 2, 7 };
const int constantValues[] = { 7, 7, 7, 7, 7 };
int nonConstantArray[] = { 7, 7, 7, 7, 7 };
const int inOrderUntilTheEnd [] = { 0, 1, 2, 3, 4, 5, 6, 7, 6 };
// Test a strictly increasing sequence
BOOST_CHECK ( ba::is_strictly_increasing (b_e(strictlyIncreasingValues)));
@ -144,11 +98,30 @@ test_increasing_decreasing(void)
BOOST_CHECK ( !ba::is_strictly_decreasing (strictlyIncreasingValues, strictlyIncreasingValues+2));
BOOST_CHECK ( !ba::is_decreasing (strictlyIncreasingValues, strictlyIncreasingValues+2));
// Test underlying routines
BOOST_CHECK ( ba::is_sorted_until ( b_e(strictlyIncreasingValues), std::less<int>()) == a_end(strictlyIncreasingValues));
BOOST_CHECK ( ba::is_sorted_until ( a_range(strictlyIncreasingValues), std::less<int>()) == boost::end(strictlyIncreasingValues));
BOOST_CHECK ( ba::is_sorted_until ( b_e(nonConstantArray), std::less<int>()) != a_end(nonConstantArray));
BOOST_CHECK ( ba::is_sorted_until ( a_range(nonConstantArray), std::less<int>()) != boost::end(nonConstantArray));
BOOST_CHECK ( ba::is_sorted_until ( b_e(randomValues), std::less<int>()) == &randomValues[2] );
BOOST_CHECK ( ba::is_sorted_until ( a_range(randomValues), std::less<int>()) == &randomValues[2] );
BOOST_CHECK ( ba::is_sorted_until ( b_e(randomValues), std::less<int>()) == &randomValues[2] );
BOOST_CHECK ( ba::is_sorted_until ( a_range(randomValues), std::less<int>()) == &randomValues[2] );
BOOST_CHECK ( ba::is_sorted_until ( a_range(inOrderUntilTheEnd), std::less<int>()) == &inOrderUntilTheEnd[8] );
// For zero and one element collections, the comparison predicate should never be called
BOOST_CHECK ( ba::is_sorted_until ( a_begin(randomValues), a_begin(randomValues), std::equal_to<int>()) == a_begin(randomValues));
BOOST_CHECK ( ba::is_sorted_until ( a_begin(randomValues), a_begin(randomValues) + 1, std::equal_to<int>()) == a_begin(randomValues) + 1);
}
int test_main( int, char * [] )
{
test_ordered ();
test_increasing_decreasing ();
return 0;
}

View File

@ -22,18 +22,18 @@ namespace ba = boost::algorithm;
template <typename Container>
typename Container::iterator offset_to_iter ( Container &v, int offset ) {
typename Container::iterator retval;
if ( offset >= 0 ) {
retval = v.begin ();
std::advance ( retval, offset );
}
else {
retval = v.end ();
std::advance ( retval, offset + 1 );
}
return retval;
}
typename Container::iterator retval;
if ( offset >= 0 ) {
retval = v.begin ();
std::advance ( retval, offset );
}
else {
retval = v.end ();
std::advance ( retval, offset + 1 );
}
return retval;
}
template <typename Container, typename Predicate>
void test_sequence ( Container &v, Predicate comp, int expected ) {
@ -79,7 +79,7 @@ void test_sequence1 () {
test_sequence ( v, less_than<int>(10), 5 );
test_sequence ( v, less_than<int>(99), -1 ); // all elements satisfy
// With bidirectional iterators.
// With bidirectional iterators.
std::list<int> l;
for ( int i = 5; i < 15; ++i )
l.push_back ( i );

0
test/search_test1.cpp Normal file → Executable file
View File

0
test/search_test2.cpp Normal file → Executable file
View File

0
test/search_test3.cpp Normal file → Executable file
View File

View File

@ -1,116 +0,0 @@
/*
Copyright (c) Marshall Clow 2010-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
Testing the range-based interfaces
*/
#include <boost/algorithm/searching/boyer_moore.hpp>
#include <boost/algorithm/searching/boyer_moore_horspool.hpp>
#include <boost/algorithm/searching/knuth_morris_pratt.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
typedef std::vector<std::string> vec;
#define NUM_TRIES 100
#define runOne(call, refDiff) { \
res = boost::algorithm::call ( haystack, needle ); \
if ( res != exp ) { \
std::cout << "Expected " \
<< exp - haystack.begin () << " got " \
<< res - haystack.begin () << std::endl; \
throw std::runtime_error \
( "Unexpected result from " #call ); \
} \
}
#define runObject(obj, refDiff) { \
boost::algorithm::obj <vec::const_iterator> s_o = \
boost::algorithm::make_##obj ( needle ); \
res = s_o ( haystack ); \
if ( res != exp ) { \
std::cout << "Expected " \
<< exp - haystack.begin () << " got " \
<< res - haystack.begin () << std::endl; \
throw std::runtime_error \
( "Unexpected result from " #obj " object" ); \
} \
}
namespace {
vec ReadFromFile ( const char *name ) {
std::ifstream in ( name, std::ios_base::binary | std::ios_base::in );
std::string temp;
vec retVal;
while ( std::getline ( in, temp ))
retVal.push_back ( temp );
return retVal;
}
void check_one ( const vec &haystack, const vec &needle, int expected ) {
vec::const_iterator res;
vec::const_iterator exp; // the expected result
if ( expected >= 0 )
exp = haystack.begin () + expected;
else if ( expected == -1 )
exp = haystack.end (); // we didn't find it1
else if ( expected == -2 )
exp = std::search ( haystack.begin (), haystack.end (), needle.begin (), needle.end ());
else
throw std::logic_error ( "Expected must be -2, -1, or >= 0" );
std::cout << "Pattern is " << needle.size () << " entries long" << std::endl;
std::cout << "Corpus is " << haystack.size () << " entries long" << std::endl;
// First, the std library search
res = std::search ( haystack.begin (), haystack.end (), needle.begin (), needle.end ());
if ( res != exp ) {
std::cout << "Expected " << exp - haystack.begin () << " got " << res - haystack.begin () << std::endl;
throw std::runtime_error ( "Unexpected result from std::search" );
}
runOne ( boyer_moore_search, stdDiff );
runObject ( boyer_moore, stdDiff );
runOne ( boyer_moore_horspool_search, stdDiff );
runObject ( boyer_moore_horspool, stdDiff );
runOne ( knuth_morris_pratt_search, stdDiff );
runObject ( knuth_morris_pratt, stdDiff );
}
}
int test_main( int , char* [] )
{
vec c1 = ReadFromFile ( "search_test_data/0001.corpus" );
vec p1b = ReadFromFile ( "search_test_data/0002b.pat" );
vec p1e = ReadFromFile ( "search_test_data/0002e.pat" );
vec p1n = ReadFromFile ( "search_test_data/0002n.pat" );
vec p1f = ReadFromFile ( "search_test_data/0002f.pat" );
std::cout << std::ios::fixed << std::setprecision(4);
// std::cout << "Corpus is " << c1.size () << " entries long\n";
std::cout << "--- Beginning ---" << std::endl;
check_one ( c1, p1b, 0 ); // Find it at position zero
std::cout << "---- Middle -----" << std::endl;
check_one ( c1, p1f, -2 ); // Don't know answer
std::cout << "------ End ------" << std::endl;
check_one ( c1, p1e, c1.size() - p1e.size ());
std::cout << "--- Not found ---" << std::endl;
check_one ( c1, p1n, -1 ); // Not found
return 0;
}