Partial fix for #5660. Better performance and less memory usage for conversions to float type (and to double type, if sizeof(double) < sizeof(long double)). New test suits. Documentation update.

[SVN r72925]
This commit is contained in:
Antony Polukhin
2011-07-06 15:43:04 +00:00
parent cd0167d6b8
commit 6a8c22d5c3
7 changed files with 918 additions and 60 deletions

View File

@@ -1,6 +1,12 @@
#ifndef BOOST_LEXICAL_CAST_INCLUDED
#define BOOST_LEXICAL_CAST_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// Boost lexical_cast.hpp header -------------------------------------------//
//
// See http://www.boost.org/libs/conversion for documentation.
@@ -502,6 +508,9 @@ namespace boost
BOOST_STATIC_CONSTANT(char, zero = '0');
BOOST_STATIC_CONSTANT(char, minus = '-');
BOOST_STATIC_CONSTANT(char, plus = '+');
BOOST_STATIC_CONSTANT(char, lowercase_e = 'e');
BOOST_STATIC_CONSTANT(char, capital_e = 'E');
BOOST_STATIC_CONSTANT(char, c_decimal_separator = '.');
};
#ifndef BOOST_LCAST_NO_WCHAR_T
@@ -511,6 +520,9 @@ namespace boost
BOOST_STATIC_CONSTANT(wchar_t, zero = L'0');
BOOST_STATIC_CONSTANT(wchar_t, minus = L'-');
BOOST_STATIC_CONSTANT(wchar_t, plus = L'+');
BOOST_STATIC_CONSTANT(wchar_t, lowercase_e = L'e');
BOOST_STATIC_CONSTANT(wchar_t, capital_e = L'E');
BOOST_STATIC_CONSTANT(wchar_t, c_decimal_separator = L'.');
};
#endif
}
@@ -646,7 +658,7 @@ namespace boost
std::string const& grouping = np.grouping();
std::string::size_type const grouping_size = grouping.size();
/* According to [22.2.2.1.2] of Programming languages - C++
/* According to Programming languages - C++
* we MUST check for correct grouping
*/
if (grouping_size && grouping[0] > 0)
@@ -719,6 +731,246 @@ namespace boost
}
}
namespace detail // lcast_ret_float
{
template <class T>
struct mantissa_holder_type
{
/* Can not be used with this type */
};
template <>
struct mantissa_holder_type<float>
{
typedef unsigned int type;
};
template <>
struct mantissa_holder_type<double>
{
#if defined(BOOST_HAS_LONG_LONG)
typedef boost::ulong_long_type type;
#elif defined(BOOST_HAS_MS_INT64)
typedef unsigned __int64 type;
#endif
};
template<class Traits, class T, class CharT>
inline bool lcast_ret_float(T& value, const CharT* begin, const CharT* end)
{
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
// TODO: use BOOST_NO_STD_LOCALE
std::locale loc;
typedef std::numpunct<CharT> numpunct;
numpunct const& np = BOOST_USE_FACET(numpunct, loc);
std::string const& grouping = np.grouping();
std::string::size_type const grouping_size = grouping.size();
CharT const thousands_sep = grouping_size ? np.thousands_sep() : 0;
CharT const decimal_point = np.decimal_point();
bool found_grouping = false;
unsigned int last_grouping_pos = grouping_size - 1;
#else
CharT const decimal_point = lcast_char_constants<CharT>::c_decimal_separator;
#endif
CharT const czero = lcast_char_constants<CharT>::zero;
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
CharT const capital_e = lcast_char_constants<CharT>::capital_e;
CharT const lowercase_e = lcast_char_constants<CharT>::lowercase_e;
value = 0.0;
typedef typename Traits::int_type int_type;
typedef BOOST_DEDUCED_TYPENAME mantissa_holder_type<T>::type mantissa_type;
int_type const zero = Traits::to_int_type(czero);
if (begin == end) return false;
/* Getting the plus/minus sign */
bool has_minus = false;
if ( *begin == minus ) {
++ begin;
has_minus = true;
if (begin == end) return false;
} else if ( *begin == plus ) {
++begin;
if (begin == end) return false;
}
if ( *begin < czero || *begin >= czero + 10 ) {
return false;
}
bool found_decimal = false;
int pow_of_10 = 0;
mantissa_type mantissa=0;
bool is_mantissa_full = false;
char length_since_last_delim = 0;
while ( begin != end )
{
if (found_decimal) {
/* We allow no thousand_separators after decimal point */
mantissa_type tmp_mantissa = mantissa * 10u;
if ( *begin == lowercase_e || *begin == capital_e ) break;
if ( *begin < czero || *begin >= czero + 10 ) return false;
if ( is_mantissa_full
|| tmp_mantissa / 10u != mantissa
|| (std::numeric_limits<mantissa_type>::max)()-(*begin - zero) < tmp_mantissa
) {
is_mantissa_full = true;
++ begin;
continue;
}
-- pow_of_10;
mantissa = tmp_mantissa;
mantissa += *begin - zero;
} else {
if (*begin >= czero && *begin < czero + 10) {
/* Checking for mantissa overflow. If overflow will
* occur, them we only increase multiplyer
*/
mantissa_type tmp_mantissa = mantissa * 10u;
if( !is_mantissa_full
&& tmp_mantissa / 10u == mantissa
&& (std::numeric_limits<mantissa_type>::max)()-(*begin - zero) >= tmp_mantissa
)
{
mantissa = tmp_mantissa;
mantissa += *begin - zero;
} else
{
is_mantissa_full = true;
++ pow_of_10;
}
++ length_since_last_delim;
} else if ( *begin == decimal_point || *begin == lowercase_e || *begin == capital_e) {
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
/* If ( we need to check grouping
* and ( grouping missmatches
* or grouping position is incorrect
* or we are using the grouping position 0 twice
* )
* ) then return error
*/
if( grouping_size && found_grouping
&& (
length_since_last_delim != grouping[0]
|| last_grouping_pos>1
|| (last_grouping_pos==0 && grouping_size>1)
)
) return false;
#endif
if(*begin == decimal_point){
++ begin;
found_decimal = true;
continue;
}else break;
}
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
else if (grouping_size && *begin == thousands_sep){
if(found_grouping)
{
/* It is not he first time, when we find thousands separator,
* so we need to chek, is the distance between two groupings
* equal to grouping[last_grouping_pos] */
if (length_since_last_delim != grouping[last_grouping_pos] )
{
if (!last_grouping_pos) return false;
else
{
-- last_grouping_pos;
if (length_since_last_delim != grouping[last_grouping_pos]) return false;
}
} else
/* We are calling the grouping[0] twice, when grouping size is more than 1 */
if (grouping_size>1u && last_grouping_pos+1<grouping_size) return false;
} else {
/* Delimiter at the begining ',000' */
if (!length_since_last_delim) return false;
found_grouping = true;
if (length_since_last_delim > grouping[last_grouping_pos] ) return false;
}
length_since_last_delim = 0;
++ begin;
/* Delimiter at the end '100,' */
if (begin == end) return false;
continue;
}
#endif
else return false;
}
++begin;
}
// Exponent found
if ( begin != end && ( *begin == lowercase_e || *begin == capital_e ) ) {
++ begin;
if ( begin == end ) return false;
bool exp_has_minus = false;
if( *begin == minus ) {
exp_has_minus = true;
++ begin;
if ( begin == end ) return false;
} else if (*begin == plus ) {
++ begin;
if ( begin == end ) return false;
}
int exp_pow_of_10 = 0;
while ( begin != end )
{
if ( *begin < czero
|| *begin >= czero + 10
|| exp_pow_of_10 * 10 < exp_pow_of_10) /* Overflows are checked lower more precisely*/
return false;
exp_pow_of_10 *= 10;
exp_pow_of_10 += *begin - zero;
++ begin;
};
if ( exp_pow_of_10 ) {
/* Overflows are checked lower */
if ( exp_has_minus ) {
pow_of_10 -= exp_pow_of_10;
} else {
pow_of_10 += exp_pow_of_10;
}
}
}
/* We need a more accurate algorithm... We can not use current algorithm
* with long doubles (and with doubles if sizeof(double)==sizeof(long double)).
*/
long double result = std::pow(10.0L, pow_of_10) * mantissa;
value = ( has_minus ? -1 * result : result);
if ( value > (std::numeric_limits<T>::max)() // is it +inf
|| value < -(std::numeric_limits<T>::max)() // is it -inf
|| value != value) // is it NaN
return false;
return true;
}
}
namespace detail // stream wrapper for handling lexical conversions
{
template<typename Target, typename Source, typename Traits>
@@ -1079,12 +1331,54 @@ namespace boost
}
}
bool operator>>(float& output)
{
return lcast_ret_float<Traits>(output,start,finish);
}
#if defined(BOOST_HAS_LONG_LONG) || defined(BOOST_HAS_MS_INT64)
private:
// we need workaround
bool no_long_double_80bit_realization_workaround(double& output, int) {
return convert_using_base_class(output);
}
// we do not need a workaround
bool no_long_double_80bit_realization_workaround(double& output,char) {
return lcast_ret_float<Traits>(output,start,finish);
}
public:
bool operator>>(double& output)
{
/*
* Some compilers implement long double as double. In that case these types have
* same size, same precision, same max and min values... And it means,
* that current implementation of lcast_ret_float cannot be used for type
* double, because it will give a big precision loss.
* */
boost::mpl::if_c<
::boost::type_traits::ice_eq< sizeof(double), sizeof(long double) >::value,
int,
char
>::type dummy = 0;
return no_long_double_80bit_realization_workaround(output, dummy);
}
#endif
// Generic istream-based algorithm.
// lcast_streambuf_for_target<InputStreamable>::value is true.
template<typename InputStreamable>
bool operator>>(InputStreamable& output)
{
return convert_using_base_class(output);
}
private:
template<typename InputStreamable>
bool convert_using_base_class(InputStreamable& output)
{
#if (defined _MSC_VER)
# pragma warning( push )
// conditional expression is constant
@@ -1112,6 +1406,7 @@ namespace boost
Traits::eof();
#endif
}
public:
bool operator>>(CharT&);
bool operator>>(unsigned char&);
@@ -1433,11 +1728,30 @@ namespace boost
template<class Target>
struct lcast_streambuf_for_target
{
#if defined(BOOST_HAS_LONG_LONG) || defined(BOOST_HAS_MS_INT64)
BOOST_STATIC_CONSTANT(bool, value =
(
::boost::type_traits::ice_not< is_integral<Target>::value >::value
::boost::type_traits::ice_or<
::boost::type_traits::ice_not< is_arithmetic<Target>::value >::value,
is_same<Target, long double>::value,
::boost::type_traits::ice_and<
is_same<Target, double>::value,
::boost::type_traits::ice_eq<sizeof(double), sizeof(long double)>::value
>::value
>::value
)
);
#else
BOOST_STATIC_CONSTANT(bool, value =
(
::boost::type_traits::ice_or<
::boost::type_traits::ice_not< is_arithmetic<Target>::value >::value,
is_same<Target, long double>::value,
is_same<Target, double>::value
>::value
)
);
#endif
};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION

View File

@@ -267,6 +267,10 @@ Eliminate an overhead of <code>std::locale</code> if your program runs in the "C
August 2006.</li>
</ul>
<h2><a name="changes">Changes</a></h2>
<h3>July 2011:</h3>
<ul type="square">
<li>Better performance and less memory usage for conversions to float type (and to double type, if sizeof(double)&lt;sizeof(long double)).</li>
</ul>
<h3>May 2011:</h3>
<ul type="square">
<li>Optimizations for "C" and other locales without number grouping.</li>

View File

@@ -86,9 +86,6 @@ void test_conversion_from_to_uintmax_t();
void test_conversion_from_to_longlong();
void test_conversion_from_to_ulonglong();
#endif
void test_conversion_from_to_float();
void test_conversion_from_to_double();
void test_conversion_from_to_long_double();
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
void test_traits();
void test_wtraits();
@@ -128,9 +125,6 @@ unit_test::test_suite *init_unit_test_suite(int, char *[])
suite->add(BOOST_TEST_CASE(&test_conversion_from_to_longlong));
suite->add(BOOST_TEST_CASE(&test_conversion_from_to_ulonglong));
#endif
suite->add(BOOST_TEST_CASE(&test_conversion_from_to_float));
suite->add(BOOST_TEST_CASE(&test_conversion_from_to_double));
suite->add(BOOST_TEST_CASE(&test_conversion_from_to_long_double));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
suite->add(BOOST_TEST_CASE(&test_traits));
suite->add(BOOST_TEST_CASE(&test_wtraits));
@@ -679,7 +673,7 @@ void test_conversion_from_to_integral_for_locale()
BOOST_CHECK_THROW(lexical_cast<T>( np.thousands_sep() + std::string("100") ), bad_lexical_cast);
// Exception must not be thrown, when we are using no separators at all
BOOST_CHECK( lexical_cast<T>("10000") == static_cast<T>(10000) );
BOOST_CHECK( lexical_cast<T>("30000") == static_cast<T>(30000) );
}
test_conversion_from_integral_to_integral<T>();
@@ -775,35 +769,6 @@ void test_conversion_from_to_integral()
BOOST_TEST_MESSAGE("Formatting with thousands_sep has not been tested");
}
template<class T>
void test_conversion_from_to_float()
{
char const zero = '0';
signed char const szero = '0';
unsigned char const uzero = '0';
test_conversion_from_integral_to_char<T>(zero);
test_conversion_from_char_to_integral<T>(zero);
test_conversion_from_integral_to_char<T>(szero);
test_conversion_from_char_to_integral<T>(szero);
test_conversion_from_integral_to_char<T>(uzero);
test_conversion_from_char_to_integral<T>(uzero);
#if !defined(BOOST_LCAST_NO_WCHAR_T) && !defined(BOOST_NO_INTRINSIC_WCHAR_T)
wchar_t const wzero = L'0';
test_conversion_from_integral_to_char<T>(wzero);
test_conversion_from_char_to_integral<T>(wzero);
#endif
test_conversion_from_integral_to_integral<T>();
BOOST_CHECK_CLOSE(lexical_cast<T>("+1"), 1, std::numeric_limits<T>::epsilon() );
BOOST_CHECK_CLOSE(lexical_cast<T>("+9"), 9, std::numeric_limits<T>::epsilon()*9 );
BOOST_CHECK_THROW(lexical_cast<T>("++1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>("-+9"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>("--1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>("+-9"), bad_lexical_cast);
}
void test_conversion_from_to_short()
{
test_conversion_from_to_integral<short>();
@@ -844,19 +809,6 @@ void test_conversion_from_to_uintmax_t()
test_conversion_from_to_integral<boost::uintmax_t>();
}
void test_conversion_from_to_float()
{
test_conversion_from_to_float<float>();
}
void test_conversion_from_to_double()
{
test_conversion_from_to_float<double>();
}
void test_conversion_from_to_long_double()
{
test_conversion_from_to_float<long double>();
}
#if defined(BOOST_HAS_LONG_LONG)
void test_conversion_from_to_longlong()
@@ -966,16 +918,25 @@ void test_char_types_conversions()
const wchar_t wc_arr[]=L"Test array of chars";
BOOST_CHECK(boost::lexical_cast<std::wstring>(wc_arr) == std::wstring(wc_arr));
BOOST_CHECK(boost::lexical_cast<wchar_t>(wc_arr[0]) == wc_arr[0]);
// Following tests depend on realization of std::locale.
// All we need to know, is that this functions must compile
BOOST_CHECK(boost::lexical_cast<wchar_t>(c_arr[0]) == wc_arr[0]);
BOOST_CHECK(boost::lexical_cast<std::wstring>(c_arr) == std::wstring(wc_arr));
BOOST_CHECK(boost::lexical_cast<std::wstring>(sc_arr) != std::wstring(wc_arr) );
BOOST_CHECK(boost::lexical_cast<std::wstring>(uc_arr) != std::wstring(wc_arr) );
BOOST_CHECK(boost::lexical_cast<wchar_t>(c_arr[0]) == wc_arr[0]);
BOOST_CHECK(boost::lexical_cast<wchar_t>(wc_arr[0]) == wc_arr[0]);
BOOST_CHECK_THROW(boost::lexical_cast<wchar_t>(uc_arr[0]), bad_lexical_cast);
BOOST_CHECK_THROW(boost::lexical_cast<wchar_t>(sc_arr[0]), bad_lexical_cast);
#endif
}

View File

@@ -25,6 +25,8 @@ test-suite conversion
[ run lexical_cast_abstract_test.cpp ../../test/build//boost_unit_test_framework/<link>static ]
[ run lexical_cast_noncopyable_test.cpp ../../test/build//boost_unit_test_framework/<link>static ]
[ run lexical_cast_vc8_bug_test.cpp ../../test/build//boost_unit_test_framework/<link>static ]
[ run lexical_cast_wchars_test.cpp ../../test/build//boost_unit_test_framework/<link>static ]
[ run lexical_cast_float_types_test.cpp ../../test/build//boost_unit_test_framework/<link>static ]
;

View File

@@ -0,0 +1,527 @@
// Unit test for boost::lexical_cast.
//
// See http://www.boost.org for most recent version, including documentation.
//
// Copyright Antony Polukhin, 2011.
//
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
#include <boost/config.hpp>
#if defined(__INTEL_COMPILER)
#pragma warning(disable: 193 383 488 981 1418 1419)
#elif defined(BOOST_MSVC)
#pragma warning(disable: 4097 4100 4121 4127 4146 4244 4245 4511 4512 4701 4800)
#endif
#include <boost/lexical_cast.hpp>
#include <boost/cstdint.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
void test_conversion_from_to_float();
void test_conversion_from_to_double();
void test_conversion_from_to_long_double();
using namespace boost;
unit_test::test_suite *init_unit_test_suite(int, char *[])
{
unit_test_framework::test_suite *suite =
BOOST_TEST_SUITE("lexical_cast float types unit test");
suite->add(BOOST_TEST_CASE(&test_conversion_from_to_float));
suite->add(BOOST_TEST_CASE(&test_conversion_from_to_double));
suite->add(BOOST_TEST_CASE(&test_conversion_from_to_long_double));
return suite;
}
// Replace "-,999" with "-999".
template<class CharT>
std::basic_string<CharT> to_str_gcc_workaround(std::basic_string<CharT> str)
{
std::locale loc;
std::numpunct<CharT> const& np = BOOST_USE_FACET(std::numpunct<CharT>, loc);
std::ctype<CharT> const& ct = BOOST_USE_FACET(std::ctype<CharT>, loc);
if(np.grouping().empty())
return str;
CharT prefix[3] = { ct.widen('-'), np.thousands_sep(), CharT() };
if(str.find(prefix) != 0)
return str;
prefix[1] = CharT();
str.replace(0, 2, prefix);
return str;
}
template<class CharT, class T>
std::basic_string<CharT> to_str(T t)
{
std::basic_ostringstream<CharT> o;
o << t;
return to_str_gcc_workaround(o.str());
}
template<class T>
void test_conversion_from_to_float_for_locale()
{
std::locale current_locale;
typedef std::numpunct<char> numpunct;
numpunct const& np = BOOST_USE_FACET(numpunct, current_locale);
if ( !np.grouping().empty() )
{
BOOST_CHECK_THROW(
lexical_cast<T>( std::string("100") + np.thousands_sep() + np.thousands_sep() + "0" )
, bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>( std::string("100") + np.thousands_sep() ), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>( np.thousands_sep() + std::string("100") ), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>( std::string("1") + np.thousands_sep() + np.decimal_point() + "e10" ), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>( std::string("1e10") + np.thousands_sep() ), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>( std::string("1") + np.thousands_sep() + "e10" ), bad_lexical_cast);
BOOST_CHECK_CLOSE(lexical_cast<T>( to_str< char >(100000) ), 100000, (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( to_str< char >(10000000u) ), 10000000u, (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( to_str< char >(100) ), 100, (std::numeric_limits<T>::epsilon()*100) );
#if !defined(BOOST_LCAST_NO_WCHAR_T) && !defined(BOOST_NO_INTRINSIC_WCHAR_T)
BOOST_CHECK_CLOSE(lexical_cast<T>( to_str< wchar_t >(100000) ), 100000, (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( to_str< wchar_t >(10000000u) ), 10000000u, (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( to_str< wchar_t >(100) ), 100, (std::numeric_limits<T>::epsilon()*100) );
#endif
// Exception must not be thrown, when we are using no separators at all
BOOST_CHECK_CLOSE( lexical_cast<T>("30000"), static_cast<T>(30000), (std::numeric_limits<T>::epsilon()*100) );
}
}
/*
* Converts char* [and wchar_t] to float number type and checks, that generated
* number is in interval [base_value-epsilon, base_value+epsilon].
*/
#ifndef BOOST_LCAST_NO_WCHAR_T
#define CHECK_CLOSE_ABS_DIFF(VAL,PREFIX) \
converted_val = lexical_cast<test_t>(#VAL); \
BOOST_CHECK_CLOSE( (VAL ## L? VAL ## L : std::numeric_limits<test_t>::epsilon()), \
(converted_val ? converted_val : std::numeric_limits<test_t>::epsilon()), \
std::numeric_limits<test_t>::epsilon() * 100 \
); \
BOOST_CHECK_EQUAL(converted_val, lexical_cast<test_t>(L## #VAL) );
#else
#define CHECK_CLOSE_ABS_DIFF(VAL,TYPE) \
converted_val = lexical_cast<test_t>(#VAL); \
BOOST_CHECK_CLOSE( (VAL ## L? VAL ## L : std::numeric_limits<test_t>::epsilon()), \
(converted_val ? converted_val : std::numeric_limits<test_t>::epsilon()), \
std::numeric_limits<test_t>::epsilon() * 100 \
);
#endif
template <class TestType>
void test_converion_to_float_types()
{
typedef TestType test_t;
test_t converted_val;
BOOST_CHECK_CLOSE(1.0, lexical_cast<test_t>('1'), (std::numeric_limits<test_t>::epsilon()));
BOOST_CHECK_EQUAL(0.0, lexical_cast<test_t>('0'));
unsigned char const uc_one = '1';
unsigned char const uc_zero ='0';
BOOST_CHECK_CLOSE(1.0, lexical_cast<test_t>(uc_one), (std::numeric_limits<test_t>::epsilon()));
BOOST_CHECK_EQUAL(0.0, lexical_cast<test_t>(uc_zero));
signed char const sc_one = '1';
signed char const sc_zero ='0';
BOOST_CHECK_CLOSE(1.0, lexical_cast<test_t>(sc_one), (std::numeric_limits<test_t>::epsilon()));
BOOST_CHECK_EQUAL(0.0, lexical_cast<test_t>(sc_zero));
BOOST_CHECK_CLOSE(1e34L, lexical_cast<test_t>( "10000000000000000000000000000000000"), (std::numeric_limits<test_t>::epsilon()*100) );
// VC failes the next test
// BOOST_CHECK_CLOSE(1e-35L, lexical_cast<test_t>("0.00000000000000000000000000000000001"), (std::numeric_limits<test_t>::epsilon()*100) );
BOOST_CHECK_CLOSE(
0.1111111111111111111111111111111111111111111111111111111111111111111111111L
, lexical_cast<test_t>("0.1111111111111111111111111111111111111111111111111111111111111111111111111")
, (std::numeric_limits<test_t>::epsilon()*100) );
CHECK_CLOSE_ABS_DIFF(1,test_t);
BOOST_CHECK_EQUAL(0,lexical_cast<test_t>("0"));
CHECK_CLOSE_ABS_DIFF(-1,test_t);
CHECK_CLOSE_ABS_DIFF(1.0, test_t);
CHECK_CLOSE_ABS_DIFF(0.0, test_t);
CHECK_CLOSE_ABS_DIFF(-1.0,test_t);
CHECK_CLOSE_ABS_DIFF(1e1, test_t);
CHECK_CLOSE_ABS_DIFF(0e1, test_t);
CHECK_CLOSE_ABS_DIFF(-1e1,test_t);
CHECK_CLOSE_ABS_DIFF(1.0e1, test_t);
CHECK_CLOSE_ABS_DIFF(0.0e1, test_t);
CHECK_CLOSE_ABS_DIFF(-1.0e1,test_t);
CHECK_CLOSE_ABS_DIFF(1e-1, test_t);
CHECK_CLOSE_ABS_DIFF(0e-1, test_t);
CHECK_CLOSE_ABS_DIFF(-1e-1,test_t);
CHECK_CLOSE_ABS_DIFF(1.0e-1, test_t);
CHECK_CLOSE_ABS_DIFF(0.0e-1, test_t);
CHECK_CLOSE_ABS_DIFF(-1.0e-1,test_t);
CHECK_CLOSE_ABS_DIFF(1E1, test_t);
CHECK_CLOSE_ABS_DIFF(0E1, test_t);
CHECK_CLOSE_ABS_DIFF(-1E1,test_t);
CHECK_CLOSE_ABS_DIFF(1.0E1, test_t);
CHECK_CLOSE_ABS_DIFF(0.0E1, test_t);
CHECK_CLOSE_ABS_DIFF(-1.0E1,test_t);
CHECK_CLOSE_ABS_DIFF(1E-1, test_t);
CHECK_CLOSE_ABS_DIFF(0E-1, test_t);
CHECK_CLOSE_ABS_DIFF(-1E-1,test_t);
CHECK_CLOSE_ABS_DIFF(1.0E-1, test_t);
CHECK_CLOSE_ABS_DIFF(0.0E-1, test_t);
CHECK_CLOSE_ABS_DIFF(-1.0E-1, test_t);
CHECK_CLOSE_ABS_DIFF(10.0, test_t);
CHECK_CLOSE_ABS_DIFF(00.0, test_t);
CHECK_CLOSE_ABS_DIFF(-10.0,test_t);
CHECK_CLOSE_ABS_DIFF(10e1, test_t);
CHECK_CLOSE_ABS_DIFF(00e1, test_t);
CHECK_CLOSE_ABS_DIFF(-10e1,test_t);
CHECK_CLOSE_ABS_DIFF(10.0e1, test_t);
CHECK_CLOSE_ABS_DIFF(00.0e1, test_t);
CHECK_CLOSE_ABS_DIFF(-10.0e1,test_t);
CHECK_CLOSE_ABS_DIFF(10e-1, test_t);
CHECK_CLOSE_ABS_DIFF(00e-1, test_t);
CHECK_CLOSE_ABS_DIFF(-10e-1,test_t);
CHECK_CLOSE_ABS_DIFF(10.0e-1, test_t);
CHECK_CLOSE_ABS_DIFF(00.0e-1, test_t);
CHECK_CLOSE_ABS_DIFF(-10.0e-1,test_t);
CHECK_CLOSE_ABS_DIFF(10E1, test_t);
CHECK_CLOSE_ABS_DIFF(00E1, test_t);
CHECK_CLOSE_ABS_DIFF(-10E1,test_t);
CHECK_CLOSE_ABS_DIFF(10.0E1, test_t);
CHECK_CLOSE_ABS_DIFF(00.0E1, test_t);
CHECK_CLOSE_ABS_DIFF(-10.0E1,test_t);
CHECK_CLOSE_ABS_DIFF(10E-1, test_t);
CHECK_CLOSE_ABS_DIFF(00E-1, test_t);
CHECK_CLOSE_ABS_DIFF(-10E-1,test_t);
CHECK_CLOSE_ABS_DIFF(10.0E-1, test_t);
CHECK_CLOSE_ABS_DIFF(00.0E-1, test_t);
CHECK_CLOSE_ABS_DIFF(-10.0E-1, test_t);
CHECK_CLOSE_ABS_DIFF(-10101.0E-011, test_t);
CHECK_CLOSE_ABS_DIFF(-10101093, test_t);
CHECK_CLOSE_ABS_DIFF(10101093, test_t);
// BOOST_CHECK(lexical_cast<test_t>("-inf") == -std::numeric_limits<test_t>::infinity() );
// BOOST_CHECK(lexical_cast<test_t>("-INF") == -std::numeric_limits<test_t>::infinity() );
// BOOST_CHECK(lexical_cast<test_t>("+inf") == std::numeric_limits<test_t>::infinity() );
// BOOST_CHECK(lexical_cast<test_t>("infinity") == std::numeric_limits<test_t>::infinity() );
//
// BOOST_CHECK(lexical_cast<test_t>("nan") == std::numeric_limits<test_t>::quiet_NaN() );
// BOOST_CHECK(lexical_cast<test_t>("NaN") == std::numeric_limits<test_t>::quiet_NaN() );
BOOST_CHECK_THROW(lexical_cast<test_t>("-inf"), bad_lexical_cast );
BOOST_CHECK_THROW(lexical_cast<test_t>("-INF"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("+inf"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("infinity"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("nan"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("NaN"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("-1.e"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("-1.E"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.e"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.E"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.0e"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.0E"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("10E"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("10e"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.0e-"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.0E-"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("10E-"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("10e-"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("e1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("e-1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("e-"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>(".e"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>(".11111111111111111111111111111111111111111111111111111111111111111111ee"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>(".11111111111111111111111111111111111111111111111111111111111111111111e-"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("-B"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("0xB"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("0x0"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("--1.0"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.0e--1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.0.0"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1e1e1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.0e-1e-1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>(" 1.0"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("1.0 "), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>(""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("-"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>('\0'), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>('-'), bad_lexical_cast);
}
template <class T>
void test_float_typess_for_overflows()
{
typedef T test_t;
test_t minvalue = (std::numeric_limits<test_t>::min)();
std::string s_min_value = lexical_cast<std::string>(minvalue);
BOOST_CHECK_CLOSE(minvalue, lexical_cast<test_t>(minvalue), (std::numeric_limits<test_t>::epsilon()*100));
BOOST_CHECK_CLOSE(minvalue, lexical_cast<test_t>(s_min_value), (std::numeric_limits<test_t>::epsilon()*100));
test_t maxvalue = (std::numeric_limits<test_t>::max)();
std::string s_max_value = lexical_cast<std::string>(maxvalue);
BOOST_CHECK_CLOSE(maxvalue, lexical_cast<test_t>(maxvalue), (std::numeric_limits<test_t>::epsilon()*100));
BOOST_CHECK_CLOSE(maxvalue, lexical_cast<test_t>(s_max_value), (std::numeric_limits<test_t>::epsilon()*100));
BOOST_CHECK_THROW(lexical_cast<test_t>(s_max_value+"1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>(s_max_value+"9"), bad_lexical_cast);
// VC9 can fail the fllowing tests on floats and doubles when using stingstream...
BOOST_CHECK_THROW(lexical_cast<test_t>("1"+s_max_value), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<test_t>("9"+s_max_value), bad_lexical_cast);
if ( is_same<test_t,float>::value )
{
BOOST_CHECK_THROW(lexical_cast<test_t>( (std::numeric_limits<double>::max)() ), bad_lexical_cast);
BOOST_CHECK(
(std::numeric_limits<double>::min)() - std::numeric_limits<test_t>::epsilon()
<= lexical_cast<test_t>( (std::numeric_limits<double>::min)() )
&& lexical_cast<test_t>( (std::numeric_limits<double>::min)() )
<= (std::numeric_limits<double>::min)() + std::numeric_limits<test_t>::epsilon()
);
}
if ( sizeof(test_t) < sizeof(long double) )
{
BOOST_CHECK_THROW(lexical_cast<test_t>( (std::numeric_limits<long double>::max)() ), bad_lexical_cast);
BOOST_CHECK(
(std::numeric_limits<long double>::min)() - std::numeric_limits<test_t>::epsilon()
<= lexical_cast<test_t>( (std::numeric_limits<long double>::min)() )
&& lexical_cast<test_t>( (std::numeric_limits<long double>::min)() )
<= (std::numeric_limits<long double>::min)() + std::numeric_limits<test_t>::epsilon()
);
}
}
#undef CHECK_CLOSE_ABS_DIFF
#define TEST_TO_FROM_CAST_AROUND_TYPED(VAL,STRING_TYPE) \
test_value = VAL + std::numeric_limits<test_t>::epsilon() * i ; \
converted_val = lexical_cast<test_t>( lexical_cast<STRING_TYPE>(test_value) ); \
BOOST_CHECK_CLOSE( \
test_value, \
converted_val, \
std::numeric_limits<test_t>::epsilon()*100 \
);
/*
* For interval [ from_mult*epsilon+VAL, to_mult*epsilon+VAL ], converts float type
* numbers to string[wstring] and then back to float type, then compares initial
* values and generated.
* Step is epsilon
*/
#ifndef BOOST_LCAST_NO_WCHAR_T
# define TEST_TO_FROM_CAST_AROUND(VAL) \
for(i=from_mult; i<=to_mult; ++i) { \
TEST_TO_FROM_CAST_AROUND_TYPED(VAL, std::string) \
TEST_TO_FROM_CAST_AROUND_TYPED(VAL, std::wstring) \
}
#else
# define TEST_TO_FROM_CAST_AROUND(VAL) \
for(i=from_mult; i<=to_mult; ++i) { \
TEST_TO_FROM_CAST_AROUND_TYPED(VAL, std::string) \
}
#endif
template <class TestType>
void test_converion_from_to_float_types()
{
typedef TestType test_t;
test_t test_value;
test_t converted_val;
int i;
int from_mult = -50;
int to_mult = 50;
TEST_TO_FROM_CAST_AROUND( 0.0 );
// TEST_TO_FROM_CAST_AROUND( std::numeric_limits<test_t>::infinity() );
// TEST_TO_FROM_CAST_AROUND( -std::numeric_limits<test_t>::infinity() );
// TEST_TO_FROM_CAST_AROUND( std::numeric_limits<test_t>::quiet_NaN() );
long double val1;
for(val1 = 1.0e-10L; val1 < 1e11; val1*=10 )
TEST_TO_FROM_CAST_AROUND( val1 );
long double val2;
for(val2 = -1.0e-10L; val2 > -1e11; val2*=10 )
TEST_TO_FROM_CAST_AROUND( val2 );
from_mult = -100;
to_mult = 0;
TEST_TO_FROM_CAST_AROUND( (std::numeric_limits<test_t>::max)() );
from_mult = 0;
to_mult = 100;
TEST_TO_FROM_CAST_AROUND( (std::numeric_limits<test_t>::min)() );
}
#undef TEST_TO_FROM_CAST_AROUND
#undef TEST_TO_FROM_CAST_AROUND_TYPED
template<class T, class CharT>
void test_conversion_from_float_to_char(CharT zero)
{
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(0)) == zero + 0);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(1)) == zero + 1);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(2)) == zero + 2);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(3)) == zero + 3);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(4)) == zero + 4);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(5)) == zero + 5);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(6)) == zero + 6);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(7)) == zero + 7);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(8)) == zero + 8);
BOOST_CHECK(lexical_cast<CharT>(static_cast<T>(9)) == zero + 9);
BOOST_CHECK_THROW(lexical_cast<CharT>(static_cast<T>(10)), bad_lexical_cast);
T t = (std::numeric_limits<T>::max)();
BOOST_CHECK_THROW(lexical_cast<CharT>(t), bad_lexical_cast);
}
template<class T, class CharT>
void test_conversion_from_char_to_float(CharT zero)
{
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 0)), static_cast<T>(0), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 1)), static_cast<T>(1), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 2)), static_cast<T>(2), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 3)), static_cast<T>(3), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 4)), static_cast<T>(4), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 5)), static_cast<T>(5), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 6)), static_cast<T>(6), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 7)), static_cast<T>(7), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 8)), static_cast<T>(8), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_CLOSE(lexical_cast<T>( static_cast<CharT>(zero + 9)), static_cast<T>(9), (std::numeric_limits<T>::epsilon()*100) );
BOOST_CHECK_THROW(lexical_cast<T>( static_cast<CharT>(zero + 10)), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>( static_cast<CharT>(zero - 1)), bad_lexical_cast);
}
struct restore_oldloc
{
std::locale oldloc;
~restore_oldloc() { std::locale::global(oldloc); }
};
template<class T>
void test_conversion_from_to_float()
{ char const zero = '0';
signed char const szero = '0';
unsigned char const uzero = '0';
test_conversion_from_float_to_char<T>(zero);
test_conversion_from_char_to_float<T>(zero);
test_conversion_from_float_to_char<T>(szero);
test_conversion_from_char_to_float<T>(szero);
test_conversion_from_float_to_char<T>(uzero);
test_conversion_from_char_to_float<T>(uzero);
#if !defined(BOOST_LCAST_NO_WCHAR_T) && !defined(BOOST_NO_INTRINSIC_WCHAR_T)
wchar_t const wzero = L'0';
test_conversion_from_float_to_char<T>(wzero);
test_conversion_from_char_to_float<T>(wzero);
#endif
BOOST_CHECK_CLOSE(lexical_cast<T>("+1"), 1, std::numeric_limits<T>::epsilon() );
BOOST_CHECK_CLOSE(lexical_cast<T>("+9"), 9, std::numeric_limits<T>::epsilon()*9 );
BOOST_CHECK_THROW(lexical_cast<T>("++1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>("-+9"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>("--1"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<T>("+-9"), bad_lexical_cast);
test_converion_to_float_types<T>();
test_float_typess_for_overflows<T>();
test_converion_from_to_float_types<T>();
typedef std::numpunct<char> numpunct;
restore_oldloc guard;
std::locale const& oldloc = guard.oldloc;
std::string grouping1 = BOOST_USE_FACET(numpunct, oldloc).grouping();
std::string grouping2(grouping1);
test_conversion_from_to_float_for_locale<T>();
try
{
std::locale newloc("");
std::locale::global(newloc);
grouping2 = BOOST_USE_FACET(numpunct, newloc).grouping();
}
catch(std::exception const& ex)
{
std::string msg("Failed to set system locale: ");
msg += ex.what();
BOOST_TEST_MESSAGE(msg);
}
if(grouping1 != grouping2)
test_conversion_from_to_float_for_locale<T>();
if(grouping1.empty() && grouping2.empty())
BOOST_TEST_MESSAGE("Formatting with thousands_sep has not been tested");
}
void test_conversion_from_to_float()
{
test_conversion_from_to_float<float>();
}
void test_conversion_from_to_double()
{
test_conversion_from_to_float<double>();
}
void test_conversion_from_to_long_double()
{
test_conversion_from_to_float<long double>();
}

View File

@@ -64,7 +64,6 @@ void test_round_conversion()
}
#if defined(BOOST_MSVC)
// See bug http://tinyurl.com/vhpvo
template<class T>
void test_msvc_magic_values()
@@ -73,7 +72,6 @@ void test_msvc_magic_values()
std::string magic_msvc_s = boost::lexical_cast<std::string>(magic_msvc);
BOOST_CHECK(magic_msvc == lexical_cast<T>(magic_msvc_s));
}
#endif
void test_round_conversion_float()
{
@@ -83,16 +81,12 @@ void test_round_conversion_float()
void test_round_conversion_double()
{
test_round_conversion<double>();
#if defined(BOOST_MSVC)
test_msvc_magic_values<double>();
#endif
}
void test_round_conversion_long_double()
{
test_round_conversion<long double>();
#if defined(BOOST_MSVC)
test_msvc_magic_values<long double>();
#endif
}

View File

@@ -0,0 +1,56 @@
// Unit test for boost::lexical_cast.
//
// See http://www.boost.org for most recent version, including documentation.
//
// Copyright Antony Polukhin, 2011.
//
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
#include <boost/config.hpp>
#if defined(__INTEL_COMPILER)
#pragma warning(disable: 193 383 488 981 1418 1419)
#elif defined(BOOST_MSVC)
#pragma warning(disable: 4097 4100 4121 4127 4146 4244 4245 4511 4512 4701 4800)
#endif
#include <boost/lexical_cast.hpp>
#include <boost/cstdint.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
using namespace boost;
void test_char_types_conversions()
{
#ifndef BOOST_LCAST_NO_WCHAR_T
const char c_arr[] = "Test array of chars";
const unsigned char uc_arr[] = "Test array of chars";
const signed char sc_arr[] = "Test array of chars";
const wchar_t wc_arr[] =L"Test array of chars";
// Following tests depend on realization of std::locale
// and pass for popular compilers and STL realizations
BOOST_CHECK(boost::lexical_cast<wchar_t>(c_arr[0]) == wc_arr[0]);
BOOST_CHECK(boost::lexical_cast<std::wstring>(c_arr) == std::wstring(wc_arr));
BOOST_CHECK(boost::lexical_cast<std::wstring>(sc_arr) != std::wstring(wc_arr) );
BOOST_CHECK(boost::lexical_cast<std::wstring>(uc_arr) != std::wstring(wc_arr) );
BOOST_CHECK_THROW(boost::lexical_cast<wchar_t>(uc_arr[0]), boost::bad_lexical_cast);
BOOST_CHECK_THROW(boost::lexical_cast<wchar_t>(sc_arr[0]), boost::bad_lexical_cast);
#endif
BOOST_CHECK(1);
}
unit_test::test_suite *init_unit_test_suite(int, char *[])
{
unit_test_framework::test_suite *suite =
BOOST_TEST_SUITE("lexical_cast char<->wchar_t unit test");
suite->add(BOOST_TEST_CASE(&test_char_types_conversions));
return suite;
}