This commit was manufactured by cvs2svn to create branch

'thread_rewrite'.

[SVN r30953]
This commit is contained in:
nobody
2005-09-13 14:20:32 +00:00
parent cb2bd8076d
commit a60c1f44a6
11 changed files with 0 additions and 1349 deletions

140
cast.htm
View File

@@ -1,140 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content=
"Microsoft FrontPage 5.0">
<meta http-equiv="Content-Type" content=
"text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Header boost/cast.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../boost.png" alt="boost.png (6897 bytes)" align=
"middle" width="277" height="86">Header <a href=
"../../boost/cast.hpp">boost/cast.hpp</a></h1>
<h2><a name="Cast Functions">Cast Functions</a></h2>
<p>The header <a href="../../boost/cast.hpp">boost/cast.hpp</a> provides <code>
<a href="#Polymorphic_cast">polymorphic_cast</a> and</code> <a href=
"#Polymorphic_cast"><code>polymorphic_downcast</code></a> function templates designed to
complement the C++ built-in casts.</p>
<p>The program <a href="cast_test.cpp">cast_test.cpp</a> can be used to
verify these function templates work as expected.</p>
<h3><a name="Polymorphic_cast">Polymorphic casts</a></h3>
<p>Pointers to polymorphic objects (objects of classes which define at
least one virtual function) are sometimes downcast or crosscast.
Downcasting means casting from a base class to a derived class.
Crosscasting means casting across an inheritance hierarchy diagram, such
as from one base to the other in a <code>Y</code> diagram hierarchy.</p>
<p>Such casts can be done with old-style casts, but this approach is
never to be recommended. Old-style casts are sorely lacking in type
safety, suffer poor readability, and are difficult to locate with search
tools.</p>
<p>The C++ built-in <code>static_cast</code> can be used for efficiently
downcasting pointers to polymorphic objects, but provides no error
detection for the case where the pointer being cast actually points to
the wrong derived class. The <code>polymorphic_downcast</code> template retains
the efficiency of <code>static_cast</code> for non-debug compilations, but for
debug compilations adds safety via an assert() that a <code>dynamic_cast</code>
succeeds.</p>
<p>The C++ built-in <code>dynamic_cast</code> can be used for downcasts and
crosscasts of pointers to polymorphic objects, but error notification in
the form of a returned value of 0 is inconvenient to test, or worse yet,
easy to forget to test. The throwing form of <code>dynamic_cast</code>, which
works on references, can be used on pointers through the ugly expression
&amp;<code>dynamic_cast&lt;T&amp;&gt;(*p)</code>, which causes undefined
behavior if <code>p</code> is <code>0</code>. The <code>polymorphic_cast</code>
template performs a <code>dynamic_cast</code> on a pointer, and throws an
exception if the <code>dynamic_cast</code> returns 0.</p>
<p>A <code>polymorphic_downcast</code> should be used for
downcasts that you are certain should succeed. Error checking is
only performed in translation units where <code>NDEBUG</code> is
not defined, via
<pre> assert( dynamic_cast&lt;Derived&gt;(x) == x )
</pre> where <code>x</code> is the source pointer. This approach
ensures that not only is a non-zero pointer returned, but also
that it is correct in the presence of multiple inheritance.
Attempts to crosscast using <code>polymorphic_downcast</code> will
fail to compile.
<b>Warning:</b> Because <code>polymorphic_downcast</code> uses assert(), it
violates the One Definition Rule (ODR) if NDEBUG is inconsistently
defined across translation units. [See ISO Std 3.2]
</p><p>
For crosscasts, or when the success of a cast can only be known at
runtime, or when efficiency is not important,
<code>polymorphic_cast</code> is preferred. </p>
<p>The C++ built-in <code>dynamic_cast</code> must be used to cast references
rather than pointers. It is also the only cast that can be used to check
whether a given interface is supported; in that case a return of 0 isn't
an error condition.</p>
<h3>polymorphic_cast and polymorphic_downcast synopsis</h3>
<blockquote>
<pre>namespace boost {
template &lt;class Derived, class Base&gt;
inline Derived polymorphic_cast(Base* x);
// Throws: std::bad_cast if ( dynamic_cast&lt;Derived&gt;(x) == 0 )
// Returns: dynamic_cast&lt;Derived&gt;(x)
template &lt;class Derived, class Base&gt;
inline Derived polymorphic_downcast(Base* x);
// Effects: assert( dynamic_cast&lt;Derived&gt;(x) == x );
// Returns: static_cast&lt;Derived&gt;(x)
}
</pre>
</blockquote>
<h3>polymorphic_downcast example</h3>
<blockquote>
<pre>#include &lt;boost/cast.hpp&gt;
...
class Fruit { public: virtual ~Fruit(){}; ... };
class Banana : public Fruit { ... };
...
void f( Fruit * fruit ) {
// ... logic which leads us to believe it is a Banana
Banana * banana = boost::polymorphic_downcast&lt;Banana*&gt;(fruit);
...
</pre>
</blockquote>
<h3>History</h3>
<p><code>polymorphic_cast</code> was suggested by Bjarne Stroustrup in "The C++
Programming Language".<br>
<code>polymorphic_downcast</code> was contributed by <a href=
"../../people/dave_abrahams.htm">Dave Abrahams</a>.<code><br>
An old
numeric_cast</code> that was contributed by <a href=
"../../people/kevlin_henney.htm">Kevlin Henney</a> is now superseeded by the <a href="../numeric/conversion/doc/index.html">Boost Numeric Conversion Library</a></p>
<hr>
<p>Revised
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan
-->June 23, 2005<!--webbot bot="Timestamp" endspan i-checksum="30348"
--></p>
<p>&copy; Copyright boost.org 1999. Permission to copy, use, modify, sell
and distribute this document is granted provided this copyright notice
appears in all copies. This document is provided "as is" without express
or implied warranty, and with no claim as to its suitability for any
purpose.</p>
</body>
</html>

View File

@@ -1,91 +0,0 @@
// boost utility cast test program -----------------------------------------//
// (C) Copyright Beman Dawes, Dave Abrahams 1999. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 28 Set 04 factored out numeric_cast<> test (Fernando Cacciola)
// 20 Jan 01 removed use of <limits> for portability to raw GCC (David Abrahams)
// 28 Jun 00 implicit_cast removed (Beman Dawes)
// 30 Aug 99 value_cast replaced by numeric_cast
// 3 Aug 99 Initial Version
#include <iostream>
#include <climits>
#include <cfloat> // for DBL_MAX (Peter Schmid)
#include <boost/cast.hpp>
# if SCHAR_MAX == LONG_MAX
# error "This test program doesn't work if SCHAR_MAX == LONG_MAX"
# endif
using namespace boost;
using std::cout;
namespace
{
struct Base
{
virtual char kind() { return 'B'; }
};
struct Base2
{
virtual char kind2() { return '2'; }
};
struct Derived : public Base, Base2
{
virtual char kind() { return 'D'; }
};
}
int main( int argc, char * argv[] )
{
# ifdef NDEBUG
cout << "NDEBUG is defined\n";
# else
cout << "NDEBUG is not defined\n";
# endif
cout << "\nBeginning tests...\n";
// test polymorphic_cast ---------------------------------------------------//
// tests which should succeed
Base * base = new Derived;
Base2 * base2 = 0;
Derived * derived = 0;
derived = polymorphic_downcast<Derived*>( base ); // downcast
assert( derived->kind() == 'D' );
derived = 0;
derived = polymorphic_cast<Derived*>( base ); // downcast, throw on error
assert( derived->kind() == 'D' );
base2 = polymorphic_cast<Base2*>( base ); // crosscast
assert( base2->kind2() == '2' );
// tests which should result in errors being detected
int err_count = 0;
base = new Base;
if ( argc > 1 && *argv[1] == '1' )
{ derived = polymorphic_downcast<Derived*>( base ); } // #1 assert failure
bool caught_exception = false;
try { derived = polymorphic_cast<Derived*>( base ); }
catch (std::bad_cast)
{ cout<<"caught bad_cast\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
// the following is just so generated code can be inspected
if ( derived->kind() == 'B' ) ++err_count;
cout << err_count << " errors detected\nTest "
<< (err_count==0 ? "passed\n" : "failed\n");
return err_count;
} // main

View File

@@ -1,38 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost Conversion Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img border="0" src="../../boost.png" align="center" width="277" height="86">Boost
Conversion Library</h1>
<p>The Conversion Library improves program safety and clarity by performing
otherwise messy conversions.&nbsp; It includes cast-style function templates designed to complement the C++
Standard's built-in casts.</p>
<p>To reduce coupling, particularly to standard library IOStreams, the Boost
Conversion Library is
supplied by several headers:</p>
<ul>
<li>The <a href="cast.htm">boost/cast</a> header provides <b>polymorphic_cast&lt;&gt;</b>
and <b>polymorphic_downcast&lt;&gt;</b> to perform safe casting between
polymorphic types.<br>
</li>
<li>The <a href="lexical_cast.htm">boost/lexical_cast</a> header provides <b>lexical_cast&lt;&gt;</b>
general literal text conversions, such as an <code>int</code> represented as
a <code>string</code>, or vice-versa.</li>
</ul>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED"
S-Format="%d %B, %Y" startspan -->June 23, 2005<!--webbot bot="Timestamp" endspan i-checksum="30348" -->
</p>
</body>
</html>

View File

@@ -1,239 +0,0 @@
<!-- saved from url=(0022)http://internet.e-mail -->
<!doctype html public "-//W3C//DTD HTML Transitional 4.0//EN">
<html>
<head>
<title>lexical_cast</title>
<meta name="author" content="Kevlin Henney, mailto:kevlin@curbralan.com">
<meta name="generator" content="Microsoft FrontPage 4.0">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../boost.png" alt="boost.png (6897 bytes)" align="center" width="277" height="86">Header
<a href="../../boost/lexical_cast.hpp">boost/lexical_cast.hpp</a></h1>
<ul type="square">
<li>
<a href="#motivation">Motivation</a></li>
<li>
<a href="#examples">Examples</a></li>
<li>
<a href="#synopsis">Synopsis</a></li>
<li>
<a href="#lexical_cast"><code>lexical_cast</code></a></li>
<li>
<a href="#bad_lexical_cast"><code>bad_lexical_cast</code></a></li>
<li>
<a href="#changes">Changes</a></li>
</ul>
<hr>
<h2><a name="motivation">Motivation</a></h2>
Sometimes a value must be converted to a literal text form, such as an <code>int</code>
represented as a <code>string</code>, or vice-versa, when a <code>string</code>
is interpreted as an <code>int</code>. Such examples are common when converting
between data types internal to a program and representation external to a
program, such as windows and configuration files.
<p>
The standard C and C++ libraries offer a number of facilities for performing
such conversions. However, they vary with their ease of use, extensibility, and
safety.
<p>
For instance, there are a number of limitations with the family of standard C
functions typified by <code>atoi</code>:
<ul type="square">
<li>
Conversion is supported in one direction only: from text to internal data type.
Converting the other way using the C library requires either the inconvenience
and compromised safety of the <code>sprintf</code> function, or the loss of
portability associated with non-standard functions such as <code>itoa</code>.
</li>
<li>
The range of types supported is only a subset of the built-in numeric types,
namely <code>int</code>, <code>long</code>, and <code>double</code>.
</li>
<li>
The range of types cannot be extended in a uniform manner. For instance,
conversion from string representation to <code>complex</code> or <code>rational</code>.
</li>
</ul>
The standard C functions typified by <code>strtol</code> have the same basic
limitations, but offer finer control over the conversion process. However, for
the common case such control is often either not required or not used. The <code>scanf</code>
family of functions offer even greater control, but also lack safety and ease
of use.
<p>
The standard C++ library offers <code>stringstream</code> for the kind of
in-core formatting being discussed. It offers a great deal of control over the
formatting and conversion of I/O to and from arbitrary types through text.
However, for simple conversions direct use of <code>stringstream</code> can be
either clumsy (with the introduction of extra local variables and the loss of
infix-expression convenience) or obscure (where <code>stringstream</code>
objects are created as temporary objects in an expression). Facets provide a
comprehensive concept and facility for controlling textual representation, but
their perceived complexity and high entry level requires an extreme degree of
involvement for simple conversions, and excludes all but a few programmers.
<p>
The <code>lexical_cast</code> function template offers a convenient and
consistent form for supporting common conversions to and from arbitrary types
when they are represented as text. The simplification it offers is in
expression-level convenience for such conversions. For more involved
conversions, such as where precision or formatting need tighter control than is
offered by the default behavior of <code>lexical_cast</code>, the conventional <code>
stringstream</code> approach is recommended. Where the conversions are
numeric to numeric, <code><a href="../numeric/conversion/doc/numeric_cast.html">numeric_cast</a></code>
may offer more reasonable behavior than <code>lexical_cast</code>.
<p>
For a good discussion of the options and issues involved in string-based
formatting, including comparison of <code>stringstream</code>, <code>lexical_cast</code>,
and others, see Herb Sutter's article, <a href="http://www.gotw.ca/publications/mill19.htm">
<i>The String Formatters of Manor Farm</i></a>.
<p>
<hr>
<h2><a name="examples">Examples</a></h2>
The following example treats command line arguments as a sequence of numeric
data: <blockquote>
<pre>
int main(int argc, char * argv[])
{
using boost::lexical_cast;
using boost::bad_lexical_cast;
std::vector&lt;short&gt; args;
while(*++argv)
{
try
{
args.push_back(lexical_cast&lt;short&gt;(*argv));
}
catch(bad_lexical_cast &amp;)
{
args.push_back(0);
}
}
...
}
</pre>
</blockquote>The following example uses numeric data in a string expression: <blockquote>
<pre>
void log_message(const std::string &amp;);
void log_errno(int yoko)
{
log_message(&quot;Error &quot; + boost::lexical_cast&lt;std::string&gt;(yoko) + &quot;: &quot; + strerror(yoko));
}
</pre>
</blockquote>
<hr>
<h2><a name="synopsis">Synopsis</a></h2>
Library features defined in <a href="../../boost/lexical_cast.hpp"><code>&quot;boost/lexical_cast.hpp&quot;</code></a>:
<blockquote>
<pre>
namespace boost
{
class <a href="#bad_lexical_cast">bad_lexical_cast</a>;
template&lt;typename Target, typename Source&gt;
Target <a href="#lexical_cast">lexical_cast</a>(Source arg);
}
</pre>
</blockquote>Unit test defined in <a href="lexical_cast_test.cpp"><code>&quot;lexical_cast_test.cpp&quot;</code></a>.
<p>
<hr>
<h2><a name="lexical_cast"><code>lexical_cast</code></a></h2>
<blockquote>
<pre>
template&lt;typename Target, typename Source&gt;
Target lexical_cast(Source arg);
</pre>
</blockquote>Returns the result of streaming <code>arg</code> into a
standard library string-based stream and then out as a <code>Target</code> object.
Where <code>Target</code> is either <code>std::string</code>
or <code>std::wstring</code>, stream extraction takes the whole content
of the string, including spaces, rather than relying on the default
<code>operator&gt;&gt;</code> behavior.
If the conversion is unsuccessful, a <a href="#bad_lexical_cast">
<code>bad_lexical_cast</code></a> exception is thrown.
<p>
The requirements on the argument and result types are:
<ul type="square">
<li>
<code>Source</code> is <i>OutputStreamable</i>, meaning that an <code>operator&lt;&lt;</code>
is defined that takes a <code>std::ostream</code> or <code>std::wostream</code> object on the
left hand side and an instance of the argument type on the right.
</li>
<li>
<code>Target</code> is <i>InputStreamable</i>, meaning that an <code>operator&gt;&gt;</code>
is defined that takes a <code>std::istream</code> or <code>std::wistream</code> object on the left hand side
and an instance of the result type on the right.
</li>
<li>
Both <code>Source</code> and <code>Target</code> are <i>CopyConstructible</i> [20.1.3].
</li>
<li>
<code>Target</code> is <i>DefaultConstructible</i>, meaning that it is possible
to <i>default-initialize</i> an object of that type [8.5, 20.1.4].
</li>
</ul>
The character type of the underlying stream is assumed to be <code>char</code> unless
either the <code>Source</code> or the <code>Target</code> requires wide-character
streaming, in which case the underlying stream uses <code>wchar_t</code>.
<code>Source</code> types that require wide-character streaming are <code>wchar_t</code>,
<code>wchar_t *</code>, and <code>std::wstring</code>. <code>Target</code> types that
require wide-character streaming are <code>wchar_t</code> and <code>std::wstring</code>.
<p>
Where a higher degree of control is required over conversions, <code>std::stringstream</code>
and <code>std::wstringstream</code> offer a more appropriate path. Where non-stream-based conversions are
required, <code>lexical_cast</code>
is the wrong tool for the job and is not special-cased for such scenarios.
<p>
<hr>
<h2><a name="bad_lexical_cast"><code>bad_lexical_cast</code></a></h2>
<blockquote>
<pre>
class bad_lexical_cast : public std::bad_cast
{
public:
... // <i>same member function interface as</i> std::exception
};
</pre>
</blockquote>Exception used to indicate runtime <a href="#lexical_cast"><code>lexical_cast</code></a>
failure.
<hr>
<h2><a name="changes">Changes</a></h2>
<h3>June 2005:</h3>
<ul type="square">
<li>Call-by-const reference for the parameters. This requires partial specialization
of class templates, so it doesn't work for MSVC 6, and it uses the original
pass by value there.<br>
</li>
<li>The MSVC 6 support is deprecated, and will be removed in a future Boost
version. </li>
</ul>
<h3>Earlier:</h3>
<ul type="square">
<li>The previous version of <code>lexical_cast</code> used the default stream
precision for reading and writing floating-point numbers. For numerics that
have a corresponding specialization of <code>std::numeric_limits</code>, the
current version now chooses a precision to match. <br>
<li>The previous version of <code>lexical_cast</code> did not support conversion
to or from any wide-character-based types. For compilers with full language
and library support for wide characters, <code>lexical_cast</code> now supports
conversions from <code>wchar_t</code>, <code>wchar_t *</code>, and <code>std::wstring</code>
and to <code>wchar_t</code> and <code>std::wstring</code>. <br>
<li>The previous version of <code>lexical_cast</code> assumed that the conventional
stream extractor operators were sufficient for reading values. However, string
I/O is asymmetric, with the result that spaces play the role of I/O separators
rather than string content. The current version fixes this error for <code>std::string</code>
and, where supported, <code>std::wstring</code>: <code>lexical_cast&lt;std::string&gt;("Hello,
World")</code> succeeds instead of failing with a <code>bad_lexical_cast</code>
exception. <br>
<li>The previous version of <code>lexical_cast</code> allowed unsafe and meaningless
conversions to pointers. The current version now throws a <code>bad_lexical_cast</code>
for conversions to pointers: <code>lexical_cast&lt;char *&gt;("Goodbye, World")</code>
now throws an exception instead of causing undefined behavior.
</ul>
<p>
<hr>
<div align="right"><small><i>&copy; Copyright Kevlin Henney, 2000&#150;2005</i></small></div>
</body>
</html>

View File

@@ -1,319 +0,0 @@
// Unit test for boost::lexical_cast.
//
// See http://www.boost.org for most recent version, including documentation.
//
// Copyright Terje Sletteb<65> and Kevlin Henney, 2005.
//
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
//
// Note: The unit test no longer compile on MSVC 6, but lexical_cast itself works for it.
#include <boost/config.hpp>
#if defined(__INTEL_COMPILER)
#pragma warning(disable: 193 383 488 981 1418 1419)
#elif defined(BOOST_MSVC)
#pragma warning(disable: 4097 4100 4121 4127 4146 4244 4245 4511 4512 4701 4800)
#endif
#include <boost/lexical_cast.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/test/included/unit_test_framework.hpp>
#if defined(BOOST_NO_STRINGSTREAM) || \
defined(BOOST_NO_STD_WSTRING) || \
defined(BOOST_NO_STD_LOCALE)
#define DISABLE_WIDE_CHAR_SUPPORT
#endif
using namespace boost;
void test_conversion_to_char();
void test_conversion_to_int();
void test_conversion_to_double();
void test_conversion_to_bool();
void test_conversion_to_string();
void test_conversion_from_to_wchar_t_alias();
void test_conversion_to_pointer();
void test_conversion_from_wchar_t();
void test_conversion_to_wchar_t();
void test_conversion_from_wstring();
void test_conversion_to_wstring();
void test_bad_lexical_cast();
void test_no_whitespace_stripping();
unit_test_framework::test_suite *init_unit_test_suite(int, char **)
{
unit_test_framework::test_suite *suite =
BOOST_TEST_SUITE("lexical_cast unit test");
suite->add(BOOST_TEST_CASE(test_conversion_to_char));
suite->add(BOOST_TEST_CASE(test_conversion_to_int));
suite->add(BOOST_TEST_CASE(test_conversion_to_double));
suite->add(BOOST_TEST_CASE(test_conversion_to_bool));
suite->add(BOOST_TEST_CASE(test_conversion_from_to_wchar_t_alias));
suite->add(BOOST_TEST_CASE(test_conversion_to_pointer));
suite->add(BOOST_TEST_CASE(test_conversion_to_string));
#ifndef DISABLE_WIDE_CHAR_SUPPORT
suite->add(BOOST_TEST_CASE(test_conversion_from_wchar_t));
suite->add(BOOST_TEST_CASE(test_conversion_to_wchar_t));
suite->add(BOOST_TEST_CASE(test_conversion_from_wstring));
suite->add(BOOST_TEST_CASE(test_conversion_to_wstring));
#endif
suite->add(BOOST_TEST_CASE(test_bad_lexical_cast));
suite->add(BOOST_TEST_CASE(test_no_whitespace_stripping));
return suite;
}
void test_conversion_to_char()
{
BOOST_CHECK_EQUAL('A', lexical_cast<char>('A'));
BOOST_CHECK_EQUAL(' ', lexical_cast<char>(' '));
BOOST_CHECK_EQUAL('1', lexical_cast<char>(1));
BOOST_CHECK_EQUAL('0', lexical_cast<char>(0));
BOOST_CHECK_THROW(lexical_cast<char>(123), bad_lexical_cast);
BOOST_CHECK_EQUAL('1', lexical_cast<char>(1.0));
BOOST_CHECK_EQUAL('1', lexical_cast<char>(true));
BOOST_CHECK_EQUAL('0', lexical_cast<char>(false));
BOOST_CHECK_EQUAL('A', lexical_cast<char>("A"));
BOOST_CHECK_EQUAL(' ', lexical_cast<char>(" "));
BOOST_CHECK_THROW(lexical_cast<char>(""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<char>("Test"), bad_lexical_cast);
BOOST_CHECK_EQUAL('A', lexical_cast<char>(std::string("A")));
BOOST_CHECK_EQUAL(' ', lexical_cast<char>(std::string(" ")));
BOOST_CHECK_THROW(
lexical_cast<char>(std::string("")), bad_lexical_cast);
BOOST_CHECK_THROW(
lexical_cast<char>(std::string("Test")), bad_lexical_cast);
}
void test_conversion_to_int()
{
BOOST_CHECK_EQUAL(1, lexical_cast<int>('1'));
BOOST_CHECK_EQUAL(0, lexical_cast<int>('0'));
BOOST_CHECK_THROW(lexical_cast<int>('A'), bad_lexical_cast);
BOOST_CHECK_EQUAL(1, lexical_cast<int>(1));
BOOST_CHECK_EQUAL(
(std::numeric_limits<int>::max)(),
lexical_cast<int>((std::numeric_limits<int>::max)()));
BOOST_CHECK_EQUAL(1, lexical_cast<int>(1.0));
BOOST_CHECK_THROW(lexical_cast<int>(1.23), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<int>(1e20), bad_lexical_cast);
BOOST_CHECK_EQUAL(1, lexical_cast<int>(true));
BOOST_CHECK_EQUAL(0, lexical_cast<int>(false));
BOOST_CHECK_EQUAL(123, lexical_cast<int>("123"));
BOOST_CHECK_THROW(
lexical_cast<int>(" 123"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<int>(""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<int>("Test"), bad_lexical_cast);
BOOST_CHECK_EQUAL(123, lexical_cast<int>("123"));
BOOST_CHECK_EQUAL(123, lexical_cast<int>(std::string("123")));
BOOST_CHECK_THROW(
lexical_cast<int>(std::string(" 123")), bad_lexical_cast);
BOOST_CHECK_THROW(
lexical_cast<int>(std::string("")), bad_lexical_cast);
BOOST_CHECK_THROW(
lexical_cast<int>(std::string("Test")), bad_lexical_cast);
}
void test_conversion_to_double()
{
BOOST_CHECK_CLOSE(1.0, lexical_cast<double>('1'), (std::numeric_limits<double>::epsilon()));
BOOST_CHECK_THROW(lexical_cast<double>('A'), bad_lexical_cast);
BOOST_CHECK_CLOSE(1.0, lexical_cast<double>(1), (std::numeric_limits<double>::epsilon()));
BOOST_CHECK_CLOSE(1.23, lexical_cast<double>(1.23), (std::numeric_limits<double>::epsilon()));
BOOST_CHECK_CLOSE(1.234567890, 1.234567890, std::numeric_limits<double>::epsilon());
BOOST_CHECK_CLOSE(1.0, lexical_cast<double>(true), (std::numeric_limits<double>::epsilon()));
BOOST_CHECK_CLOSE(0.0, lexical_cast<double>(false), (std::numeric_limits<double>::epsilon()));
BOOST_CHECK_CLOSE(1.23, lexical_cast<double>("1.23"), (std::numeric_limits<double>::epsilon()));
BOOST_CHECK_THROW(lexical_cast<double>(""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<double>("Test"), bad_lexical_cast);
BOOST_CHECK_CLOSE(1.23, lexical_cast<double>(std::string("1.23")), (std::numeric_limits<double>::epsilon()));
BOOST_CHECK_THROW(
lexical_cast<double>(std::string("")), bad_lexical_cast);
BOOST_CHECK_THROW(
lexical_cast<double>(std::string("Test")), bad_lexical_cast);
}
void test_conversion_to_bool()
{
BOOST_CHECK_EQUAL(true, lexical_cast<bool>('1'));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>('0'));
BOOST_CHECK_THROW(lexical_cast<bool>('A'), bad_lexical_cast);
BOOST_CHECK_EQUAL(true, lexical_cast<bool>(1));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>(0));
BOOST_CHECK_THROW(lexical_cast<bool>(123), bad_lexical_cast);
BOOST_CHECK_EQUAL(true, lexical_cast<bool>(1.0));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>(0.0));
BOOST_CHECK_EQUAL(true, lexical_cast<bool>(true));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>(false));
BOOST_CHECK_EQUAL(true, lexical_cast<bool>("1"));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>("0"));
BOOST_CHECK_THROW(lexical_cast<bool>(""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<bool>("Test"), bad_lexical_cast);
BOOST_CHECK_EQUAL(true, lexical_cast<bool>("1"));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>("0"));
BOOST_CHECK_EQUAL(true, lexical_cast<bool>(std::string("1")));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>(std::string("0")));
BOOST_CHECK_THROW(
lexical_cast<bool>(std::string("")), bad_lexical_cast);
BOOST_CHECK_THROW(
lexical_cast<bool>(std::string("Test")), bad_lexical_cast);
}
void test_conversion_to_string()
{
BOOST_CHECK_EQUAL("A", lexical_cast<std::string>('A'));
BOOST_CHECK_EQUAL(" ", lexical_cast<std::string>(' '));
BOOST_CHECK_EQUAL("123", lexical_cast<std::string>(123));
BOOST_CHECK_EQUAL("1.23", lexical_cast<std::string>(1.23));
BOOST_CHECK_EQUAL("1.111111111", lexical_cast<std::string>(1.111111111));
BOOST_CHECK_EQUAL("1", lexical_cast<std::string>(true));
BOOST_CHECK_EQUAL("0", lexical_cast<std::string>(false));
BOOST_CHECK_EQUAL("Test", lexical_cast<std::string>("Test"));
BOOST_CHECK_EQUAL(" ", lexical_cast<std::string>(" "));
BOOST_CHECK_EQUAL("", lexical_cast<std::string>(""));
BOOST_CHECK_EQUAL("Test", lexical_cast<std::string>(std::string("Test")));
BOOST_CHECK_EQUAL(" ", lexical_cast<std::string>(std::string(" ")));
BOOST_CHECK_EQUAL("", lexical_cast<std::string>(std::string("")));
}
void test_conversion_from_to_wchar_t_alias()
{
BOOST_CHECK_EQUAL(123u, lexical_cast<unsigned short>("123"));
BOOST_CHECK_EQUAL(123u, lexical_cast<unsigned int>("123"));
BOOST_CHECK_EQUAL(123u, lexical_cast<unsigned long>("123"));
BOOST_CHECK_EQUAL(std::string("123"),
lexical_cast<std::string>(static_cast<unsigned short>(123)));
BOOST_CHECK_EQUAL(std::string("123"), lexical_cast<std::string>(123u));
BOOST_CHECK_EQUAL(std::string("123"), lexical_cast<std::string>(123ul));
}
void test_conversion_to_pointer()
{
BOOST_CHECK_THROW(lexical_cast<char *>("Test"), bad_lexical_cast);
#ifndef DISABLE_WIDE_CHAR_SUPPORT
BOOST_CHECK_THROW(lexical_cast<wchar_t *>("Test"), bad_lexical_cast);
#endif
}
void test_conversion_from_wchar_t()
{
#ifndef DISABLE_WIDE_CHAR_SUPPORT
#if !defined(BOOST_NO_INTRINSIC_WCHAR_T)
BOOST_CHECK_EQUAL(1, lexical_cast<int>(L'1'));
BOOST_CHECK_THROW(lexical_cast<int>(L'A'), bad_lexical_cast);
#endif
BOOST_CHECK_EQUAL(123, lexical_cast<int>(L"123"));
BOOST_CHECK_THROW(lexical_cast<int>(L""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<int>(L"Test"), bad_lexical_cast);
#if !defined(BOOST_NO_INTRINSIC_WCHAR_T)
BOOST_CHECK_EQUAL(1.0, lexical_cast<double>(L'1'));
BOOST_CHECK_THROW(lexical_cast<double>(L'A'), bad_lexical_cast);
#endif
BOOST_CHECK_EQUAL(1.23, lexical_cast<double>(L"1.23"));
BOOST_CHECK_THROW(lexical_cast<double>(L""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<double>(L"Test"), bad_lexical_cast);
#if !defined(BOOST_NO_INTRINSIC_WCHAR_T)
BOOST_CHECK_EQUAL(true, lexical_cast<bool>(L'1'));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>(L'0'));
BOOST_CHECK_THROW(lexical_cast<bool>(L'A'), bad_lexical_cast);
#endif
BOOST_CHECK_EQUAL(true, lexical_cast<bool>(L"1"));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>(L"0"));
BOOST_CHECK_THROW(lexical_cast<bool>(L""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<bool>(L"Test"), bad_lexical_cast);
#endif
}
void test_conversion_to_wchar_t()
{
#if !defined(DISABLE_WIDE_CHAR_SUPPORT) && !defined(BOOST_NO_INTRINSIC_WCHAR_T)
BOOST_CHECK_EQUAL(L'1', lexical_cast<wchar_t>(1));
BOOST_CHECK_EQUAL(L'0', lexical_cast<wchar_t>(0));
BOOST_CHECK_THROW(lexical_cast<wchar_t>(123), bad_lexical_cast);
BOOST_CHECK_EQUAL(L'1', lexical_cast<wchar_t>(1.0));
BOOST_CHECK_EQUAL(L'0', lexical_cast<wchar_t>(0.0));
BOOST_CHECK_EQUAL(L'1', lexical_cast<wchar_t>(true));
BOOST_CHECK_EQUAL(L'0', lexical_cast<wchar_t>(false));
BOOST_CHECK_EQUAL(L'A', lexical_cast<wchar_t>(L'A'));
BOOST_CHECK_EQUAL(L' ', lexical_cast<wchar_t>(L' '));
BOOST_CHECK_EQUAL(L'A', lexical_cast<wchar_t>(L"A"));
BOOST_CHECK_EQUAL(L' ', lexical_cast<wchar_t>(L" "));
BOOST_CHECK_THROW(lexical_cast<wchar_t>(L""), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<wchar_t>(L"Test"), bad_lexical_cast);
BOOST_CHECK_EQUAL(L'A', lexical_cast<wchar_t>(std::wstring(L"A")));
BOOST_CHECK_EQUAL(L' ', lexical_cast<wchar_t>(std::wstring(L" ")));
BOOST_CHECK_THROW(
lexical_cast<wchar_t>(std::wstring(L"")), bad_lexical_cast);
BOOST_CHECK_THROW(
lexical_cast<wchar_t>(std::wstring(L"Test")), bad_lexical_cast);
#endif
}
void test_conversion_from_wstring()
{
#ifndef DISABLE_WIDE_CHAR_SUPPORT
BOOST_CHECK_EQUAL(123, lexical_cast<int>(std::wstring(L"123")));
BOOST_CHECK_THROW(
lexical_cast<int>(std::wstring(L"")), bad_lexical_cast);
BOOST_CHECK_THROW(
lexical_cast<int>(std::wstring(L"Test")), bad_lexical_cast);
BOOST_CHECK_EQUAL(true, lexical_cast<bool>(std::wstring(L"1")));
BOOST_CHECK_EQUAL(false, lexical_cast<bool>(std::wstring(L"0")));
BOOST_CHECK_THROW(
lexical_cast<bool>(std::wstring(L"")), bad_lexical_cast);
BOOST_CHECK_THROW(
lexical_cast<bool>(std::wstring(L"Test")), bad_lexical_cast);
#endif
}
void test_conversion_to_wstring()
{
#ifndef DISABLE_WIDE_CHAR_SUPPORT
BOOST_CHECK(L"123" == lexical_cast<std::wstring>(123));
BOOST_CHECK(L"1.23" == lexical_cast<std::wstring>(1.23));
BOOST_CHECK(L"1.111111111" == lexical_cast<std::wstring>(1.111111111));
BOOST_CHECK(L"1" == lexical_cast<std::wstring>(true));
BOOST_CHECK(L"0" == lexical_cast<std::wstring>(false));
#if !defined(BOOST_NO_INTRINSIC_WCHAR_T)
BOOST_CHECK(L"A" == lexical_cast<std::wstring>(L'A'));
BOOST_CHECK(L" " == lexical_cast<std::wstring>(L' '));
#endif
BOOST_CHECK(L"Test" == lexical_cast<std::wstring>(L"Test"));
BOOST_CHECK(L" " == lexical_cast<std::wstring>(L" "));
BOOST_CHECK(L"" == lexical_cast<std::wstring>(L""));
BOOST_CHECK(L"Test" == lexical_cast<std::wstring>(std::wstring(L"Test")));
BOOST_CHECK(L" " == lexical_cast<std::wstring>(std::wstring(L" ")));
BOOST_CHECK(L"" == lexical_cast<std::wstring>(std::wstring(L"")));
#endif
}
void test_bad_lexical_cast()
{
try
{
lexical_cast<int>(std::string("Test"));
BOOST_CHECK(false); // Exception expected
}
catch(const bad_lexical_cast &e)
{
BOOST_CHECK(e.source_type() == typeid(std::string));
BOOST_CHECK(e.target_type() == typeid(int));
}
}
void test_no_whitespace_stripping()
{
BOOST_CHECK_THROW(lexical_cast<int>(" 123"), bad_lexical_cast);
BOOST_CHECK_THROW(lexical_cast<int>("123 "), bad_lexical_cast);
}

View File

@@ -1,100 +0,0 @@
// boost utility cast test program -----------------------------------------//
// (C) Copyright Beman Dawes, Dave Abrahams 1999. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 28 Set 04 factored out numeric_cast<> test (Fernando Cacciola)
// 20 Jan 01 removed use of <limits> for portability to raw GCC (David Abrahams)
// 28 Jun 00 implicit_cast removed (Beman Dawes)
// 30 Aug 99 value_cast replaced by numeric_cast
// 3 Aug 99 Initial Version
#include <iostream>
#include <climits>
#include <cfloat> // for DBL_MAX (Peter Schmid)
#include <boost/cast.hpp>
#include "boost/test/minimal.hpp"
# if SCHAR_MAX == LONG_MAX
# error "This test program doesn't work if SCHAR_MAX == LONG_MAX"
# endif
using namespace boost;
using std::cout;
int test_main( int argc, char * argv[] )
{
# ifdef NDEBUG
cout << "NDEBUG is defined\n";
# else
cout << "NDEBUG is not defined\n";
# endif
cout << "\nBeginning tests...\n";
// test implicit_cast and numeric_cast -------------------------------------//
// tests which should succeed
long small_value = 1;
long small_negative_value = -1;
long large_value = LONG_MAX;
long large_negative_value = LONG_MIN;
signed char c = 0;
c = large_value; // see if compiler generates warning
c = numeric_cast<signed char>( small_value );
BOOST_CHECK( c == 1 );
c = 0;
c = numeric_cast<signed char>( small_value );
BOOST_CHECK( c == 1 );
c = 0;
c = numeric_cast<signed char>( small_negative_value );
BOOST_CHECK( c == -1 );
// These tests courtesy of Joe R NWP Swatosh<joe.r.swatosh@usace.army.mil>
BOOST_CHECK( 0.0f == numeric_cast<float>( 0.0 ) );
BOOST_CHECK( 0.0 == numeric_cast<double>( 0.0 ) );
// tests which should result in errors being detected
bool caught_exception = false;
try { c = numeric_cast<signed char>( large_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #1\n"; caught_exception = true; }
BOOST_CHECK ( caught_exception );
caught_exception = false;
try { c = numeric_cast<signed char>( large_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #2\n"; caught_exception = true; }
BOOST_CHECK ( caught_exception );
unsigned long ul;
caught_exception = false;
try { ul = numeric_cast<unsigned long>( large_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #3\n"; caught_exception = true; }
BOOST_CHECK ( caught_exception );
caught_exception = false;
try { ul = numeric_cast<unsigned long>( small_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #4\n"; caught_exception = true; }
BOOST_CHECK ( caught_exception );
caught_exception = false;
try { numeric_cast<int>( DBL_MAX ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #5\n"; caught_exception = true; }
BOOST_CHECK ( caught_exception );
return 0 ;
}

308
test.hpp
View File

@@ -1,308 +0,0 @@
// what: simple unit test framework
// who: developed by Kevlin Henney
// when: November 2000
// where: tested with BCC 5.5, MSVC 6.0, and g++ 2.91
//
// ChangeLog:
// 20 Jan 2001 - Fixed a warning for MSVC (Dave Abrahams)
#ifndef TEST_INCLUDED
#define TEST_INCLUDED
#include <exception>
#include <iostream>
#include <strstream> // for out-of-the-box g++
#include <string>
namespace test // test tuple comprises name and nullary function (object)
{
template<typename string_type, typename function_type>
struct test
{
string_type name;
function_type action;
static test make(string_type name, function_type action)
{
test result; // MSVC aggreggate initializer bugs
result.name = name;
result.action = action;
return result;
}
};
}
namespace test // failure exception used to indicate checked test failures
{
class failure : public std::exception
{
public: // struction (default cases are OK)
failure(const std::string & why)
: reason(why)
{
}
// std::~string has no exception-specification (could throw anything),
// but we need to be compatible with std::~exception's empty one
// see std::15.4p13 and std::15.4p3
~failure() throw()
{
}
public: // usage
virtual const char * what() const throw()
{
return reason.c_str();
}
private: // representation
std::string reason;
};
}
namespace test // not_implemented exception used to mark unimplemented tests
{
class not_implemented : public std::exception
{
public: // usage (default ctor and dtor are OK)
virtual const char * what() const throw()
{
return "not implemented";
}
};
}
namespace test // test utilities
{
inline void check(bool condition, const std::string & description)
{
if(!condition)
{
throw failure(description);
}
}
inline void check_true(bool value, const std::string & description)
{
check(value, "expected true: " + description);
}
inline void check_false(bool value, const std::string & description)
{
check(!value, "expected false: " + description);
}
template<typename lhs_type, typename rhs_type>
void check_equal(
const lhs_type & lhs, const rhs_type & rhs,
const std::string & description)
{
check(lhs == rhs, "expected equal values: " + description);
}
template<typename lhs_type, typename rhs_type>
void check_unequal(
const lhs_type & lhs, const rhs_type & rhs,
const std::string & description)
{
check(lhs != rhs, "expected unequal values: " + description);
}
inline void check_null(const void* ptr, const std::string & description)
{
check(!ptr, "expected null pointer: " + description);
}
inline void check_non_null(const void* ptr, const std::string & description)
{
check(ptr != 0, "expected non-null pointer: " + description);
}
}
#define TEST_CHECK_THROW(expression, exception, description) \
try \
{ \
expression; \
throw ::test::failure(description); \
} \
catch(exception &) \
{ \
}
namespace test // memory tracking (enabled if test new and delete linked in)
{
class allocations
{
public: // singleton access
static allocations & instance()
{
static allocations singleton;
return singleton;
}
public: // logging
void clear()
{
alloc_count = dealloc_count = 0;
}
void allocation()
{
++alloc_count;
}
void deallocation()
{
++dealloc_count;
}
public: // reporting
unsigned long allocated() const
{
return alloc_count;
}
unsigned long deallocated() const
{
return dealloc_count;
}
bool balanced() const
{
return alloc_count == dealloc_count;
}
private: // structors (default dtor is fine)
allocations()
: alloc_count(0), dealloc_count(0)
{
}
private: // prevention
allocations(const allocations &);
allocations & operator=(const allocations &);
private: // state
unsigned long alloc_count, dealloc_count;
};
}
namespace test // tester is the driver class for a sequence of tests
{
template<typename test_iterator>
class tester
{
public: // structors (default destructor is OK)
tester(test_iterator first_test, test_iterator after_last_test)
: begin(first_test), end(after_last_test)
{
}
public: // usage
bool operator()(); // returns true if all tests passed
private: // representation
test_iterator begin, end;
private: // prevention
tester(const tester &);
tester &operator=(const tester &);
};
template<typename test_iterator>
bool tester<test_iterator>::operator()()
{
using namespace std;
unsigned long passed = 0, failed = 0, unimplemented = 0;
for(test_iterator current = begin; current != end; ++current)
{
cerr << "[" << current->name << "] " << flush;
string result = "passed"; // optimistic
try
{
allocations::instance().clear();
current->action();
if(!allocations::instance().balanced())
{
unsigned long allocated = allocations::instance().allocated();
unsigned long deallocated = allocations::instance().deallocated();
ostrstream report;
report << "new/delete ("
<< allocated << " allocated, "
<< deallocated << " deallocated)"
<< ends;
const char * text = report.str();
report.freeze(false);
throw failure(text);
}
++passed;
}
catch(const failure & caught)
{
(result = "failed: ") += caught.what();
++failed;
}
catch(const not_implemented &)
{
result = "not implemented";
++unimplemented;
}
catch(const exception & caught)
{
(result = "exception: ") += caught.what();
++failed;
}
catch(...)
{
result = "failed with unknown exception";
++failed;
}
cerr << result << endl;
}
cerr << passed + failed << " tests: "
<< passed << " passed, "
<< failed << " failed";
if(unimplemented)
{
cerr << " (" << unimplemented << " not implemented)";
}
cerr << endl;
return failed == 0;
}
}
#endif
// Copyright Kevlin Henney, 2000. All rights reserved.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

View File

@@ -1,33 +0,0 @@
# Signals library
# Copyright (C) 2001-2003 Douglas Gregor
# Permission to copy, use, sell and distribute this software is granted
# provided this copyright notice appears in all copies. Permission to modify
# the code and to distribute modified code is granted provided this copyright
# notice appears in all copies, and a notice that the code was modified is
# included with the copyright notice. This software is provided "as is"
# without express or implied warranty, and with no claim as to its suitability
# for any purpose.
# For more information, see http://www.boost.org/
# Testing Jamfile autogenerated from XML source
subproject libs/conversion/test ;
# bring in rules for testing
import testing ;
# Make tests run by default.
DEPENDS all : test ;
{
test-suite conversion
: [ run implicit_cast.cpp ]
[ compile-fail implicit_cast_fail.cpp ]
[ run ../cast_test.cpp ]
[ run ../lexical_cast_test.cpp ]
;
}

View File

@@ -1,26 +0,0 @@
# Signals library
# Copyright (C) 2001-2003 Douglas Gregor
# Permission to copy, use, sell and distribute this software is granted
# provided this copyright notice appears in all copies. Permission to modify
# the code and to distribute modified code is granted provided this copyright
# notice appears in all copies, and a notice that the code was modified is
# included with the copyright notice. This software is provided "as is"
# without express or implied warranty, and with no claim as to its suitability
# for any purpose.
# For more information, see http://www.boost.org/
# bring in rules for testing
import testing ;
test-suite conversion
: [ run implicit_cast.cpp ]
[ compile-fail implicit_cast_fail.cpp ]
[ run ../cast_test.cpp ]
[ run ../numeric_cast_test.cpp ]
[ run ../lexical_cast_test.cpp ]
;

View File

@@ -1,33 +0,0 @@
// Copyright David Abrahams 2003.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/implicit_cast.hpp>
#include <cassert>
#include <boost/type.hpp>
using boost::implicit_cast;
using boost::type;
template <class T>
type<T> check_return(T) { return type<T>(); }
struct foo
{
foo(char const*) {}
operator long() const { return 0; }
};
typedef type<long> long_type;
typedef type<foo> foo_type;
int main()
{
type<long> x = check_return(boost::implicit_cast<long>(1));
assert(boost::implicit_cast<long>(1) == 1L);
type<foo> f = check_return(boost::implicit_cast<foo>("hello"));
type<long> z = check_return(boost::implicit_cast<long>(foo("hello")));
return 0;
}

View File

@@ -1,22 +0,0 @@
// Copyright David Abrahams 2003.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/implicit_cast.hpp>
#include <boost/type.hpp>
#define BOOST_INCLUDE_MAIN
#include <boost/test/test_tools.hpp>
using boost::implicit_cast;
struct foo
{
explicit foo(char const*) {}
};
int test_main(int, char*[])
{
foo x = implicit_cast<foo>("foobar");
}