Finished example with user defined type_index, improved doocs and refactored some of the functions

This commit is contained in:
Antony Polukhin
2014-02-20 15:36:23 +04:00
parent b44845b46d
commit 7488e75a9c
7 changed files with 267 additions and 127 deletions

View File

@ -203,13 +203,34 @@ expands to nothing.
[xinclude autodoc.xml]
[section Making own type_index]
Sometimes there may be a need to create your own type info system. This may be usefull if you wish to store some more info about types (PODness, size of a type, pointers to common functions...) or if you have an idea of a more compact types representations.
[import ../examples/user_defined_typeinfo.hpp]
[import ../examples/user_defined_typeinfo.cpp]
[section Basics]
[type_index_userdefined_usertypes]
[type_index_userdefined_enum]
[type_index_my_type_index]
[type_index_my_type_index_usage]
[endsect]
[section Getting type infos at runtime]
[type_index_my_type_index_register_class]
[type_index_my_type_index_type_id_runtime_implmentation]
[type_index_my_type_index_type_id_runtime_classes]
[type_index_my_type_index_type_id_runtime_test]
[endsect]
[section Using new type infos all around the code]
[type_index_my_type_index_worldwide_macro]
[type_index_my_type_index_worldwide_typedefs]
[type_index_my_type_index_worldwide_usage]
[endsect]
[endsect]
[section Space and Performance]

View File

@ -4,136 +4,31 @@
// (See the accompanying file LICENSE_1_0.txt
// or a copy at <http://www.boost.org/LICENSE_1_0.txt>.)
//[type_index_userdefined_usertypes
/*`
The following example shows how a user defined type_info can be created and used.
Example works with and without RTTI.
Consider situation when user uses only those types in `typeid()`:
//[type_index_my_type_index_worldwide_macro
/*`
There is an easy way to force `boost::typeind::type_id` to use your own type_index class.
All we need to do is just define `BOOST_TYPE_INDEX_USER_TYPEINDEX` to the full path to header file
of your type index class:
*/
#include <vector>
#include <string>
namespace my_namespace {
class my_class;
struct my_struct;
typedef std::vector<my_class> my_classes;
typedef std::string my_string;
} // namespace my_namespace
//] [/type_index_userdefined_usertypes]
// BOOST_TYPE_INDEX_USER_TYPEINDEX must be defined *BEFORE* first inclusion of <boost/type_index.hpp>
#define BOOST_TYPE_INDEX_USER_TYPEINDEX <boost/../libs/type_index/examples/user_defined_typeinfo.hpp>
#include <boost/type_index.hpp>
//] [/type_index_my_type_index_worldwide_macro]
//[type_index_userdefined_enum
/*`
In that case user may wish to save space in binary and create it's own type system.
For that case `detail::typenum<>` meta function is added. Depending on the input type T
this function will return different numeric values.
*/
#include <boost/type_index/type_index_facade.hpp>
namespace my_namespace { namespace detail {
template <class T> struct typenum;
template <> struct typenum<void>{ enum {value = 0}; };
template <> struct typenum<my_class>{ enum {value = 1}; };
template <> struct typenum<my_struct>{ enum {value = 2}; };
template <> struct typenum<my_classes>{ enum {value = 3}; };
template <> struct typenum<my_string>{ enum {value = 4}; };
// my_typeinfo structure is used to save type number
struct my_typeinfo {
// type_[0] will hold a type number
// type_[1] will be '\0', to have a zero terminated raw type name
char type_[2];
};
template <class T>
inline const my_typeinfo& my_typeinfo_construct() {
static const my_typeinfo ret = {{ static_cast<char>(typenum<T>::value), '\0' }};
return ret;
}
}} // my_namespace::detail
//] [/type_index_userdefined_usertypes]
//[type_index_my_type_index
/*`
`my_type_index` is a user created type_index class. If in doubt during this phase, you can always
take a look at the `<boost/type_index/ctti_type_index.hpp>` or `<boost/type_index/stl_type_index.hpp>`
files. Documentation for `type_index_facade` could be also useful.
See implementation of `my_type_index`:
*/
namespace my_namespace {
class my_type_index: public boost::typeind::type_index_facade<my_type_index, detail::my_typeinfo> {
const detail::my_typeinfo* data_;
public:
typedef detail::my_typeinfo type_info_t;
inline my_type_index() BOOST_NOEXCEPT
: data_(&detail::my_typeinfo_construct<void>())
{}
inline my_type_index(const type_info_t& data) BOOST_NOEXCEPT
: data_(&data)
{}
inline const type_info_t& type_info() const BOOST_NOEXCEPT {
return *data_;
}
inline const char* raw_name() const BOOST_NOEXCEPT {
return data_->type_;
}
inline std::string pretty_name() const {
// Must be in sync with detail::typenum<T>::value
static const char* names[] = {
"void", "my_class", "my_struct", "my_classes", "my_string"
};
const std::size_t indx = static_cast<std::size_t>(data_->type_[0]);
return names[indx];
}
template <class T>
inline static my_type_index type_id() BOOST_NOEXCEPT {
return detail::my_typeinfo_construct<T>();
}
};
} // namespace my_namespace
/*`
Note that we have used the boost::typeind::type_index_facade class as base.
That class took care about all the helper function and operators (comparison, hashing, ostreaming and others).
*/
//] [/type_index_my_type_index]
namespace my_namespace {
class my_class{};
struct my_struct{};
} // namespace my_namespace
//[type_index_my_type_index_usage
/*`
Finally we can use the my_type_index class for getting type indexes:
*/
using namespace my_namespace;
#include <cassert>
int main() {
//[type_index_my_type_index_usage
/*`
Finally we can use the my_type_index class for getting type indexes:
*/
my_type_index
cl1 = my_type_index::type_id<my_class>(),
st1 = my_type_index::type_id<my_struct>(),
@ -145,7 +40,26 @@ int main() {
assert(st2 == st1);
assert(vec.pretty_name() == "my_classes");
assert(cl1.pretty_name() == "my_class");
}
//] [/type_index_my_type_index_usage]
//[type_index_my_type_index_type_id_runtime_test
/*`
Now the follwoing example will compile and work.
*/
my_struct str;
my_class& reference = str;
assert(my_type_index::type_id<my_struct>() == my_type_index::type_id_runtime(reference));
//][/type_index_my_type_index_type_id_runtime_test]
//[type_index_my_type_index_worldwide_usage
/*`
That's it! Now all TypeIndex global methods and typedefs will be using your class:
*/
boost::typeind::type_index worldwide = boost::typeind::type_id<my_classes>();
assert(worldwide.pretty_name() == "my_classes");
assert(worldwide == my_type_index::type_id<my_classes>());
//][/type_index_my_type_index_worldwide_usage]
}

View File

@ -0,0 +1,201 @@
// Copyright 2013-2014 Antony Polukhin
// Distributed under the Boost Software License, Version 1.0.
// (See the accompanying file LICENSE_1_0.txt
// or a copy at <http://www.boost.org/LICENSE_1_0.txt>.)
#ifndef USER_DEFINED_TYPEINFO_HPP
#define USER_DEFINED_TYPEINFO_HPP
//[type_index_userdefined_usertypes
/*`
The following example shows how a user defined type_info can be created and used.
Example works with and without RTTI.
Consider situation when user uses only those types in `typeid()`:
*/
#include <vector>
#include <string>
namespace my_namespace {
class my_class;
struct my_struct;
typedef std::vector<my_class> my_classes;
typedef std::string my_string;
} // namespace my_namespace
//] [/type_index_userdefined_usertypes]
//[type_index_userdefined_enum
/*`
In that case user may wish to save space in binary and create it's own type system.
For that case `detail::typenum<>` meta function is added. Depending on the input type T
this function will return different numeric values.
*/
#include <boost/type_index/type_index_facade.hpp>
namespace my_namespace { namespace detail {
template <class T> struct typenum;
template <> struct typenum<void>{ enum {value = 0}; };
template <> struct typenum<my_class>{ enum {value = 1}; };
template <> struct typenum<my_struct>{ enum {value = 2}; };
template <> struct typenum<my_classes>{ enum {value = 3}; };
template <> struct typenum<my_string>{ enum {value = 4}; };
// my_typeinfo structure is used to save type number
struct my_typeinfo {
// type_[0] will hold a type number
// type_[1] will be '\0', to have a zero terminated raw type name
char type_[2];
};
template <class T>
inline const my_typeinfo& my_typeinfo_construct() {
static const my_typeinfo ret = {{ static_cast<char>(typenum<T>::value), '\0' }};
return ret;
}
}} // my_namespace::detail
//] [/type_index_userdefined_usertypes]
//[type_index_my_type_index
/*`
`my_type_index` is a user created type_index class. If in doubt during this phase, you can always
take a look at the `<boost/type_index/ctti_type_index.hpp>` or `<boost/type_index/stl_type_index.hpp>`
files. Documentation for `type_index_facade` could be also useful.
See implementation of `my_type_index`:
*/
namespace my_namespace {
class my_type_index: public boost::typeind::type_index_facade<my_type_index, detail::my_typeinfo> {
const detail::my_typeinfo* data_;
public:
typedef detail::my_typeinfo type_info_t;
inline my_type_index() BOOST_NOEXCEPT
: data_(&detail::my_typeinfo_construct<void>())
{}
inline my_type_index(const type_info_t& data) BOOST_NOEXCEPT
: data_(&data)
{}
inline const type_info_t& type_info() const BOOST_NOEXCEPT {
return *data_;
}
inline const char* raw_name() const BOOST_NOEXCEPT {
return data_->type_;
}
inline std::string pretty_name() const {
// Must be in sync with detail::typenum<T>::value
static const char* names[] = {
"void", "my_class", "my_struct", "my_classes", "my_string"
};
const std::size_t indx = static_cast<std::size_t>(data_->type_[0]);
return names[indx];
}
template <class T>
inline static my_type_index type_id() BOOST_NOEXCEPT {
return detail::my_typeinfo_construct<T>();
}
template <class T>
inline static my_type_index type_id_with_cvr() BOOST_NOEXCEPT {
return detail::my_typeinfo_construct<T>();
}
template <class T>
inline static my_type_index type_id_runtime(const T& variable) BOOST_NOEXCEPT;
};
} // namespace my_namespace
/*`
Note that we have used the boost::typeind::type_index_facade class as base.
That class took care about all the helper function and operators (comparison, hashing, ostreaming and others).
*/
//] [/type_index_my_type_index]
//[type_index_my_type_index_register_class
/*`
Usually to allow runtime type info we need to register class with some macro.
Let's see how a `MY_TYPEINDEX_REGISTER_CLASS` macro could be implemented for our `my_type_index` class:
*/
namespace my_namespace { namespace detail {
template <class T>
inline const my_typeinfo& my_typeinfo_construct_ref(const T*) {
return my_typeinfo_construct<T>();
}
#define MY_TYPEINDEX_REGISTER_CLASS \
virtual const my_namespace::detail::my_typeinfo& type_id_runtime() const { \
return my_namespace::detail::my_typeinfo_construct_ref(this); \
}
}} // namespace my_namespace::detail
//] [/type_index_my_type_index_register_class]
//[type_index_my_type_index_type_id_runtime_implmentation
/*`
Now when we have a MY_TYPEINDEX_REGISTER_CLASS, let's implement a `my_type_index::type_id_runtime` method:
*/
namespace my_namespace {
template <class T>
my_type_index my_type_index::type_id_runtime(const T& variable) BOOST_NOEXCEPT {
// Classes that were marked with `MY_TYPEINDEX_REGISTER_CLASS` will have a
// `type_id_runtime()` method.
return variable.type_id_runtime();
}
}
//] [/type_index_my_type_index_type_id_runtime_implmentation]
//[type_index_my_type_index_type_id_runtime_classes
/*`
Consider the situation, when `my_class` and `my_struct` are polymorphic classes:
*/
namespace my_namespace {
class my_class {
public:
MY_TYPEINDEX_REGISTER_CLASS
virtual ~my_class() {}
};
struct my_struct: public my_class {
MY_TYPEINDEX_REGISTER_CLASS
};
} // namespace my_namespace
//] [/type_index_my_type_index_type_id_runtime_classes]
//[type_index_my_type_index_worldwide_typedefs
/*`
You'll also need to add some typedefs and macro to your "user_defined_typeinfo.hpp" header file:
*/
#define BOOST_TYPE_INDEX_REGISTER_CLASS MY_TYPEINDEX_REGISTER_CLASS
namespace boost { namespace typeind {
typedef my_namespace::my_type_index type_index;
}}
//] [/type_index_my_type_index_worldwide_typedefs]
#endif // USER_DEFINED_TYPEINFO_HPP

View File

@ -67,6 +67,10 @@ typedef type_index::type_info_t type_info;
/// \def BOOST_TYPE_INDEX_REGISTER_CLASS
/// BOOST_TYPE_INDEX_REGISTER_CLASS is a helper macro that is used to help to emulate RTTI.
/// Put this macro into the public section of polymorphic class to allow runtime type detection.
///
/// Depending on the typeid() availability this macro will expand to nothing or to virtual helper function
/// `virtual const type_info& type_id_runtime() const`.
///
/// \b Example:
/// \code
/// class A {

View File

@ -29,10 +29,10 @@ inline const ctti_data& ctti_construct_typeid_ref(const T*) BOOST_NOEXCEPT {
}}} // namespace boost::typeind::detail
#define BOOST_TYPE_INDEX_REGISTER_CTTI_CLASS \
virtual const boost::typeind::detail::ctti_data& type_id_ref() const BOOST_NOEXCEPT { \
return boost::typeind::detail::ctti_construct_typeid_ref(this); \
} \
#define BOOST_TYPE_INDEX_REGISTER_CTTI_CLASS \
virtual const boost::typeind::detail::ctti_data& type_id_runtime() const BOOST_NOEXCEPT { \
return boost::typeind::detail::ctti_construct_typeid_ref(this); \
} \
/**/
#endif // BOOST_TYPE_INDEX_CTTI_REGISTER_CLASS_HPP

View File

@ -101,7 +101,7 @@ inline ctti_type_index ctti_type_index::type_id_with_cvr() BOOST_NOEXCEPT {
template <class T>
inline ctti_type_index ctti_type_index::type_id_runtime(const T& variable) BOOST_NOEXCEPT {
return variable.type_id_ref();
return variable.type_id_runtime();
}

View File

@ -278,7 +278,7 @@ BOOST_AUTO_TEST_CASE(comparators_type_id_runtime)
BOOST_CHECK(typeid(&rc1) == typeid(pb1));
BOOST_CHECK(typeid(&rb1) == typeid(pc1));
#else
BOOST_CHECK(boost::typeind::type_index(pc1->type_id_ref()).raw_name());
BOOST_CHECK(boost::typeind::type_index(pc1->type_id_runtime()).raw_name());
#endif
BOOST_CHECK_EQUAL(boost::typeind::type_id_runtime(rc1), boost::typeind::type_id_runtime(*pc1));