Compare commits

..

1 Commits

Author SHA1 Message Date
nobody
cfb38f7097 This commit was manufactured by cvs2svn to create branch
'python-v2-dev'.

[SVN r14785]
2002-08-12 13:35:54 +00:00
13 changed files with 4 additions and 1534 deletions

View File

@@ -1,648 +0,0 @@
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<Title>Collection</Title>
</HEAD>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<h1>
<img src="../../c++boost.gif" alt="boost logo"
width="277" align="middle" height="86">
<br>Collection
</h1>
<h3>Description</h3>
A Collection is a <i>concept</i> similar to the STL <a
href="http://www.sgi.com/tech/stl/Container.html">Container</a>
concept. A Collection provides iterators for accessing a range of
elements and provides information about the number of elements in the
Collection. However, a Collection has fewer requirements than a
Container. The motivation for the Collection concept is that there are
many useful Container-like types that do not meet the full
requirements of Container, and many algorithms that can be written
with this reduced set of requirements. To summarize the reduction
in requirements:
<UL>
<LI>It is not required to &quot;own&quot; its elements: the lifetime
of an element in a Collection does not have to match the lifetime of
the Collection object, though the lifetime of the element should cover
the lifetime of the Collection object.
<LI>The semantics of copying a Collection object is not defined (it
could be a deep or shallow copy or not even support copying).
<LI>The associated reference type of a Collection does
not have to be a real C++ reference.
</UL>
Because of the reduced requirements, some care must be taken when
writing code that is meant to be generic for all Collection types.
In particular, a Collection object should be passed by-reference
since assumptions can not be made about the behaviour of the
copy constructor.
<p>
<h3>Associated types</h3>
<Table border>
<TR>
<TD VAlign=top>
Value type
</TD>
<TD VAlign=top>
<tt>X::value_type</tt>
</TD>
<TD VAlign=top>
The type of the object stored in a Collection.
If the Collection is <i>mutable</i> then
the value type must be <A
href="http://www.sgi.com/tech/stl/Assignable.html">Assignable</A>.
Otherwise the value type must be <a href="./CopyConstructible.html">CopyConstructible</a>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Iterator type
</TD>
<TD VAlign=top>
<tt>X::iterator</tt>
</TD>
<TD VAlign=top>
The type of iterator used to iterate through a Collection's
elements. The iterator's value type is expected to be the
Collection's value type. A conversion
from the iterator type to the const iterator type must exist.
The iterator type must be an <A href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</A>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Const iterator type
</TD>
<TD VAlign=top>
<tt>X::const_iterator</tt>
</TD>
<TD VAlign=top>
A type of iterator that may be used to examine, but not to modify,
a Collection's elements.
</TD>
</TR>
<TR>
<TD VAlign=top>
Reference type
</TD>
<TD VAlign=top>
<tt>X::reference</tt>
</TD>
<TD VAlign=top>
A type that behaves like a reference to the Collection's value type.
<a href="#1">[1]</a>
</TD>
</TR>
<TR>
<TD VAlign=top>
Const reference type
</TD>
<TD VAlign=top>
<tt>X::const_reference</tt>
</TD>
<TD VAlign=top>
A type that behaves like a const reference to the Collection's value type.
</TD>
</TR>
<TR>
<TD VAlign=top>
Pointer type
</TD>
<TD VAlign=top>
<tt>X::pointer</tt>
</TD>
<TD VAlign=top>
A type that behaves as a pointer to the Collection's value type.
</TD>
</TR>
<TR>
<TD VAlign=top>
Distance type
</TD>
<TD VAlign=top>
<tt>X::difference_type</tt>
</TD>
<TD VAlign=top>
A signed integral type used to represent the distance between two
of the Collection's iterators. This type must be the same as
the iterator's distance type.
</TD>
</TR>
<TR>
<TD VAlign=top>
Size type
</TD>
<TD VAlign=top>
<tt>X::size_type</tt>
</TD>
<TD VAlign=top>
An unsigned integral type that can represent any nonnegative value
of the Collection's distance type.
</TD>
</tr>
</table>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>X</tt>
</TD>
<TD VAlign=top>
A type that is a model of Collection.
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>a</tt>, <tt>b</tt>
</TD>
<TD VAlign=top>
Object of type <tt>X</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>T</tt>
</TD>
<TD VAlign=top>
The value type of <tt>X</tt>.
</TD>
</tr>
</table>
<h3>Valid expressions</h3>
The following expressions must be valid.
<p>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
</TR>
<TR>
<TD VAlign=top>
Beginning of range
</TD>
<TD VAlign=top>
<tt>a.begin()</tt>
</TD>
<TD VAlign=top>
<tt>iterator</tt> if <tt>a</tt> is mutable, <tt>const_iterator</tt> otherwise
</TD>
</TR>
<TR>
<TD VAlign=top>
End of range
</TD>
<TD VAlign=top>
<tt>a.end()</tt>
</TD>
<TD VAlign=top>
<tt>iterator</tt> if <tt>a</tt> is mutable, <tt>const_iterator</tt> otherwise
</TD>
</TR>
<TR>
<TD VAlign=top>
Size
</TD>
<TD VAlign=top>
<tt>a.size()</tt>
</TD>
<TD VAlign=top>
<tt>size_type</tt>
</TD>
</TR>
<!--
<TR>
<TD VAlign=top>
Maximum size
</TD>
<TD VAlign=top>
<tt>a.max_size()</tt>
</TD>
<TD VAlign=top>
<tt>size_type</tt>
</TD>
</TR>
<TR>
-->
<TD VAlign=top>
Empty Collection
</TD>
<TD VAlign=top>
<tt>a.empty()</tt>
</TD>
<TD VAlign=top>
Convertible to <tt>bool</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
Swap
</TD>
<TD VAlign=top>
<tt>a.swap(b)</tt>
</TD>
<TD VAlign=top>
<tt>void</tt>
</TD>
</tr>
</table>
<h3>Expression semantics</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Semantics
</TH>
<TH>
Postcondition
</TH>
</TR>
<TD VAlign=top>
<TR>
<TD VAlign=top>
Beginning of range
</TD>
<TD VAlign=top>
<tt>a.begin()</tt>
</TD>
<TD VAlign=top>
Returns an iterator pointing to the first element in the Collection.
</TD>
<TD VAlign=top>
<tt>a.begin()</tt> is either dereferenceable or past-the-end. It is
past-the-end if and only if <tt>a.size() == 0</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
End of range
</TD>
<TD VAlign=top>
<tt>a.end()</tt>
</TD>
<TD VAlign=top>
Returns an iterator pointing one past the last element in the
Collection.
</TD>
<TD VAlign=top>
<tt>a.end()</tt> is past-the-end.
</TD>
</TR>
<TR>
<TD VAlign=top>
Size
</TD>
<TD VAlign=top>
<tt>a.size()</tt>
</TD>
<TD VAlign=top>
Returns the size of the Collection, that is, its number of elements.
</TD>
<TD VAlign=top>
<tt>a.size() &gt;= 0
</TD>
</TR>
<!--
<TR>
<TD VAlign=top>
Maximum size
</TD>
<TD VAlign=top>
<tt>a.max_size()</tt>
</TD>
<TD VAlign=top>
&nbsp;
</TD>
<TD VAlign=top>
Returns the largest size that this Collection can ever have. <A href="#8">[8]</A>
</TD>
<TD VAlign=top>
<tt>a.max_size() &gt;= 0 &amp;&amp; a.max_size() &gt;= a.size()</tt>
</TD>
</TR>
-->
<TR>
<TD VAlign=top>
Empty Collection
</TD>
<TD VAlign=top>
<tt>a.empty()</tt>
</TD>
<TD VAlign=top>
Equivalent to <tt>a.size() == 0</tt>. (But possibly faster.)
</TD>
<TD VAlign=top>
&nbsp;
</TD>
</TR>
<TR>
<TD VAlign=top>
Swap
</TD>
<TD VAlign=top>
<tt>a.swap(b)</tt>
</TD>
<TD VAlign=top>
Equivalent to <tt>swap(a,b)</tt>
</TD>
<TD VAlign=top>
&nbsp;
</TD>
</tr>
</table>
<h3>Complexity guarantees</h3>
<tt>begin()</tt> and <tt>end()</tt> are amortized constant time.
<P>
<tt>size()</tt> is at most linear in the Collection's
size. <tt>empty()</tt> is amortized constant time.
<P>
<tt>swap()</tt> is at most linear in the size of the two collections.
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign=top>
Valid range
</TD>
<TD VAlign=top>
For any Collection <tt>a</tt>, <tt>[a.begin(), a.end())</tt> is a valid
range.
</TD>
</TR>
<TR>
<TD VAlign=top>
Range size
</TD>
<TD VAlign=top>
<tt>a.size()</tt> is equal to the distance from <tt>a.begin()</tt> to <tt>a.end()</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Completeness
</TD>
<TD VAlign=top>
An algorithm that iterates through the range <tt>[a.begin(), a.end())</tt>
will pass through every element of <tt>a</tt>.
</TD>
</tr>
</table>
<h3>Models</h3>
<UL>
<LI> <tt>array</tt>
<LI> <tt>array_ptr</tt>
<LI> <tt>vector&lt;bool&gt;</tt>
</UL>
<h3>Collection Refinements</h3>
There are quite a few concepts that refine the Collection concept,
similar to the concepts that refine the Container concept. Here
is a brief overview of the refining concepts.
<h4>ForwardCollection</h4>
The elements are arranged in some order that
does not change spontaneously from one iteration to the next. As
a result, a ForwardCollection is
<A
href="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</A>
and
<A
href="http://www.sgi.com/tech/stl/LessThanComparable.html">LessThanComparable</A>.
In addition, the iterator type of a ForwardCollection is a
MultiPassInputIterator which is just an InputIterator with the added
requirements that the iterator can be used to make multiple passes
through a range, and that if <tt>it1 == it2</tt> and <tt>it1</tt> is
dereferenceable then <tt>++it1 == ++it2</tt>. The ForwardCollection
also has a <tt>front()</tt> method.
<p>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Font
</TD>
<TD VAlign=top>
<tt>a.front()</tt>
</TD>
<TD VAlign=top>
<tt>reference</tt> if <tt>a</tt> is mutable, <br> <tt>const_reference</tt>
otherwise.
</TD>
<TD VAlign=top>
Equivalent to <tt>*(a.first())</tt>.
</TD>
</TR>
</table>
<h4>ReversibleCollection</h4>
The container provides access to iterators that traverse in both
directions (forward and reverse). The iterator type must meet all of
the requirements of
<a href="http://www.sgi.com/tech/stl/BidirectionalIterator.html">BidirectionalIterator</a>
except that the reference type does not have to be a real C++
reference. The ReversibleCollection adds the following requirements
to those of ForwardCollection.
<p>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Beginning of range
</TD>
<TD VAlign=top>
<tt>a.rbegin()</tt>
</TD>
<TD VAlign=top>
<tt>reverse_iterator</tt> if <tt>a</tt> is mutable,
<tt>const_reverse_iterator</tt> otherwise.
</TD>
<TD VAlign=top>
Equivalent to <tt>X::reverse_iterator(a.end())</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
End of range
</TD>
<TD VAlign=top>
<tt>a.rend()</tt>
</TD>
<TD VAlign=top>
<tt>reverse_iterator</tt> if <tt>a</tt> is mutable,
<tt>const_reverse_iterator</tt> otherwise.
</TD>
<TD VAlign=top>
Equivalent to <tt>X::reverse_iterator(a.begin())</tt>.
</TD>
</tr>
<TR>
<TD VAlign=top>
Back
</TD>
<TD VAlign=top>
<tt>a.back()</tt>
</TD>
<TD VAlign=top>
<tt>reference</tt> if <tt>a</tt> is mutable, <br> <tt>const_reference</tt>
otherwise.
</TD>
<TD VAlign=top>
Equivalent to <tt>*(--a.end())</tt>.
</TD>
</TR>
</table>
<h4>SequentialCollection</h4>
The elements are arranged in a strict linear order. No extra methods
are required.
<h4>RandomAccessCollection</h4>
The iterators of a RandomAccessCollection satisfy all of the
requirements of <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>
except that the reference type does not have to be a real C++
reference. In addition, a RandomAccessCollection provides
an element access operator.
<p>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Element Access
</TD>
<TD VAlign=top>
<tt>a[n]</tt>
</TD>
<TD VAlign=top>
<tt>reference</tt> if <tt>a</tt> is mutable,
<tt>const_reference</tt> otherwise.
</TD>
<TD VAlign=top>
Returns the nth element of the Collection.
<tt>n</tt> must be convertible to <tt>size_type</tt>.
Precondition: <tt>0 &lt;= n &lt; a.size()</tt>.
</TD>
</TR>
</table>
<h3>Notes</h3>
<P><A name="1">[1]</A>
The reference type does not have to be a real C++ reference. The
requirements of the reference type depend on the context within which
the Collection is being used. Specifically it depends on the
requirements the context places on the value type of the Collection.
The reference type of the Collection must meet the same requirements
as the value type. In addition, the reference objects must be
equivalent to the value type objects in the collection (which is
trivially true if they are the same object). Also, in a mutable
Collection, an assignment to the reference object must result in an
assignment to the object in the Collection (again, which is trivially
true if they are the same object, but non-trivial if the reference
type is a proxy class).
<h3>See also</h3>
<A href="http://www.sgi.com/tech/stl/Container.html">Container</A>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF=http://www.boost.org/people/jeremy_siek.htm>Jeremy Siek</A>, Univ.of Notre Dame and C++ Library & Compiler Group/SGI (<A HREF="mailto:jsiek@engr.sgi.com">jsiek@engr.sgi.com</A>)
</TD></TR></TABLE>
</BODY>
</HTML>

View File

@@ -408,7 +408,7 @@ template struct call_traits_test<int[2], true>;
#endif #endif
#endif #endif
#if defined(BOOST_MSVC) && _MSC_VER <= 1300 #ifdef BOOST_MSVC
unsigned int expected_failures = 14; unsigned int expected_failures = 14;
#elif defined(__SUNPRO_CC) #elif defined(__SUNPRO_CC)
#if(__SUNPRO_CC <= 0x520) #if(__SUNPRO_CC <= 0x520)

View File

@@ -52,7 +52,7 @@ private:
T* t_; T* t_;
}; };
# if defined(__BORLANDC__) && (__BORLANDC__ <= 0x570) # if defined(__BORLANDC__) && (__BORLANDC__ <= 0x560)
# define BOOST_REF_CONST # define BOOST_REF_CONST
# else # else
# define BOOST_REF_CONST const # define BOOST_REF_CONST const

View File

@@ -1,82 +0,0 @@
// (C) 2002, Fernando Luis Cacciola Carballal.
//
// This material is provided "as is", with absolutely no warranty expressed
// or implied. Any use is at your own risk.
//
// Permission to use or copy this software for any purpose is hereby granted
// without fee, provided the above notices are retained on all copies.
// Permission to modify the code and to distribute modified code is granted,
// provided the above notices are retained, and a notice that the code was
// modified is included with the above copyright notice.
//
// 21 Ago 2002 (Created) Fernando Cacciola
//
#ifndef BOOST_UTILITY_VALUE_INIT_21AGO2002_HPP
#define BOOST_UTILITY_VALUE_INIT_21AGO2002_HPP
#include "boost/detail/select_type.hpp"
#include "boost/type_traits/cv_traits.hpp"
namespace boost {
namespace vinit_detail {
template<class T>
class const_T_base
{
protected :
const_T_base() : x() {}
T x ;
} ;
template<class T>
struct non_const_T_base
{
protected :
non_const_T_base() : x() {}
mutable T x ;
} ;
template<class T>
struct select_base
{
typedef typename
detail::if_true< ::boost::is_const<T>::value >
::template then< const_T_base<T>, non_const_T_base<T> >::type type ;
} ;
} // namespace vinit_detail
template<class T>
class value_initialized : private vinit_detail::select_base<T>::type
{
public :
value_initialized() {}
operator T&() const { return this->x ; }
T& data() const { return this->x ; }
} ;
template<class T>
T const& get ( value_initialized<T> const& x )
{
return x.data() ;
}
template<class T>
T& get ( value_initialized<T>& x )
{
return x.data() ;
}
} // namespace boost
#endif

View File

@@ -128,8 +128,6 @@
<a href="generator_iterator.htm">Generator Iterator Adaptor</a> <a href="generator_iterator.htm">Generator Iterator Adaptor</a>
<li>Header <tt><a href="../../boost/permutation_iterator.hpp">boost/permutation_iterator.hpp</a></tt><br> <li>Header <tt><a href="../../boost/permutation_iterator.hpp">boost/permutation_iterator.hpp</a></tt><br>
<a href="permutation_iterator.htm">Permutation Iterator Adaptor</a> <a href="permutation_iterator.htm">Permutation Iterator Adaptor</a>
<li>Header <tt><a href="../../boost/shared_container_iterator.hpp">boost/shared_container_iterator.hpp</a></tt><br>
<a href="shared_container_iterator.html">Shared_Container Iterator Adaptor</a>
</ul> </ul>
<p><b><a href="../../people/dave_abrahams.htm">Dave <p><b><a href="../../people/dave_abrahams.htm">Dave
@@ -158,9 +156,6 @@
adaptor.<br> adaptor.<br>
Toon Knapen contributed the <a href="permutation_iterator.htm">permutation Toon Knapen contributed the <a href="permutation_iterator.htm">permutation
iterator</a> adaptor.<br> iterator</a> adaptor.<br>
<b><a href="../../people/ronald_garcia.htm">Ronald Garcia</a></b>
contributed the <a href="shared_container_iterator.html">shared container iterator</a>
adaptor.<br>
<h2><a name="iterator_adaptor">Class template</a> <h2><a name="iterator_adaptor">Class template</a>
<tt>iterator_adaptor</tt></h2> <tt>iterator_adaptor</tt></h2>

View File

@@ -569,7 +569,7 @@ test_main( int , char * [] )
cout << "Created point, and operated on it." << endl; cout << "Created point, and operated on it." << endl;
for (int n = 0; n < 1000; ++n) // was 10,000 but took too long (Beman) for (int n = 0; n < 10000; ++n)
{ {
boost::minstd_rand r; boost::minstd_rand r;
tester<long, int>()(r); tester<long, int>()(r);

View File

@@ -1,332 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Shared Container Iterator Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="center" width="277" height="86">
<h1>Shared Container Iterator</h1>
Defined in header
<a href="../../boost/shared_container_iterator.hpp">boost/shared_container_iterator.hpp</a>
<p>
The purpose of the shared container iterator is to attach the lifetime
of a container to the lifetime of its iterators. In other words,
the container will be deleted after the last iterator is destroyed.
The shared container iterator is typically used to implement functions
that return iterators over a
range of objects that will only be needed for the lifetime of
the iterators. By returning a pair of shared iterators from a
function, the callee can ensure that the underlying container's
lifetime will be properly managed.
<p>
The shared container iterator augments an iterator into a shared
container with a reference counted pointer to the container.
Assuming no other references exist to the container, it will be
destroyed when the last shared container iterator is destroyed.
In all other ways, the shared container iterator
behaves the same as its base iterator.
<h2>Synopsis</h2>
<pre>
namespace boost {
template &lt;typename <a href="http://www.sgi.com/tech/stl/Container.html">Container</a>&gt;
class shared_container_iterator_generator;
template &lt;typename <a href="http://www.sgi.com/tech/stl/Container.html">Container</a>&gt;
typename shared_container_iterator_generator&lt;Container&gt;::type
make_shared_container_iterator(typename Container::iterator base,
boost::shared_ptr&lt;Container&gt; const&amp; container);
std::pair&lt
typename shared_container_iterator_generator&lt;Container&gt;::type,
typename shared_container_iterator_generator&lt;Container&gt;::type
&gt;
make_shared_container_range(boost::shared_ptr&lt;Container&gt; const&amp; container);
}
</pre>
<hr>
<h2><a name="generator">The Shared Container Iterator Type Generator</a></h2>
The class <tt>shared_container_iterator_generator</tt> is a helper
class to construct a shared container iterator type. The template
parameter for this class is a type that models the
<a href="http://www.sgi.com/tech/stl/Container.html">Container</a>
concept.
<pre>
template &lt;typename Container&gt;
class shared_container_iterator_generator
{
public:
typedef <a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt; type;
};
</pre>
<h3>Example</h3>
<p>
The following example illustrates how to use the
<tt>shared_counter_iterator_generator</tt> to create an iterator that
regulates the lifetime of a reference counted <tt>std::vector</tt>.
Though the original <tt>shared_ptr</tt> to the vector ceases to exist, the
<tt>shared_counter_iterator</tt>s extend the lifetime of the container.
<p>
<a href="./shared_iterator_example1.cpp">shared_iterator_example1.cpp</a>:
<PRE>
<font color="#008040">#include "shared_container_iterator.hpp"</font>
<font color="#008040">#include "boost/shared_ptr.hpp"</font>
<font color="#008040">#include &lt;algorithm&gt;</font>
<font color="#008040">#include &lt;iostream&gt;</font>
<font color="#008040">#include &lt;vector&gt;</font>
<B>typedef</B> boost::shared_container_iterator_generator&lt; std::vector&lt;<B>int</B>&gt; &gt;::type iterator;
<B>void</B> set_range(iterator& i, iterator& end) {
boost::shared_ptr&lt; std::vector&lt;<B>int</B>&gt; &gt; ints(<B>new</B> std::vector&lt;<B>int</B>&gt;());
ints-&gt;push_back(<font color="#0000A0">0</font>);
ints-&gt;push_back(<font color="#0000A0">1</font>);
ints-&gt;push_back(<font color="#0000A0">2</font>);
ints-&gt;push_back(<font color="#0000A0">3</font>);
ints-&gt;push_back(<font color="#0000A0">4</font>);
ints-&gt;push_back(<font color="#0000A0">5</font>);
i = iterator(ints-&gt;begin(),ints);
end = iterator(ints-&gt;end(),ints);
}
<B>int</B> main() {
iterator i,end;
set_range(i,end);
std::copy(i,end,std::ostream_iterator&lt;<B>int</B>&gt;(std::cout,<font color="#0000FF">","</font>));
std::cout.put(<font color="#0000FF">'\n'</font>);
<B>return</B> <font color="#0000A0">0</font>;
}
</PRE>
The output from this part is:
<pre>
0,1,2,3,4,5,
</pre>
<h3>Template Parameters</h3>
<Table border>
<TR>
<TH>Parameter</TH><TH>Description</TH>
</TR>
<TR>
<TD><a
href="http://www.sgi.com/tech/stl/Container.html"><tt>Container</tt></a></TD>
<TD>The type of the container that we wish to iterate over. It must be
a model of the
<a href="http://www.sgi.com/tech/stl/Container.html"><tt>Container</tt></a>
concept.
</TD>
</TR>
</Table>
<h3>Model of</h3>
The shared container iterator adaptor (the type
<tt>shared_container_iterator_generator<...>::type</tt>) models the
same iterator concept as the base iterator
(<tt>Container::iterator</tt>) up to
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a>.
<h3>Members</h3>
The shared container iterator type implements the member functions and
operators required of the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access Iterator</a>
concept, though only operations defined for the base iterator will be valid.
In addition it has the following constructor:
<pre>
shared_container_iterator_generator::type(Container::iterator const&amp; it,
boost::shared_ptr&lt;Container&gt; const&amp; container)
</pre>
<p>
<hr>
<p>
<h2><a name="make_iterator">The Shared Container Iterator Object Generator</a></h2>
<pre>
template &lt;typename Container&gt;
typename shared_container_iterator_generator&lt;AdaptableUnaryFunction,BaseIterator&gt;::type
make_shared_container_iterator(Container::iterator base,
boost::shared_ptr&lt;Container&gt; const&amp; container)
</pre>
This function provides an alternative to using the shared container
iterator type generator to create the iterator type before
construction. Using the object generator, a shared container iterator
can be created and passed to a function without explicitly specifying
its type.
<h3>Example</h3>
This example, similar to the previous, uses
<tt>make_shared_container_iterator()</tt> to create the iterators.
<p>
<a href="./shared_iterator_example2.cpp">shared_iterator_example2.cpp</a>:
<PRE>
<font color="#008040">#include "shared_container_iterator.hpp"</font>
<font color="#008040">#include "boost/shared_ptr.hpp"</font>
<font color="#008040">#include &lt;algorithm&gt;</font>
<font color="#008040">#include &lt;iterator&gt;</font>
<font color="#008040">#include &lt;iostream&gt;</font>
<font color="#008040">#include &lt;vector&gt;</font>
<B>template</B> &lt;<B>typename</B> Iterator&gt;
<B>void</B> print_range_nl (Iterator begin, Iterator end) {
<B>typedef</B> <B>typename</B> std::iterator_traits&lt;Iterator&gt;::value_type val;
std::copy(begin,end,std::ostream_iterator&lt;val&gt;(std::cout,<font color="#0000FF">","</font>));
std::cout.put(<font color="#0000FF">'\n'</font>);
}
<B>int</B> main() {
<B>typedef</B> boost::shared_ptr&lt; std::vector&lt;<B>int</B>&gt; &gt; ints_t;
{
ints_t ints(<B>new</B> std::vector&lt;<B>int</B>&gt;());
ints-&gt;push_back(<font color="#0000A0">0</font>);
ints-&gt;push_back(<font color="#0000A0">1</font>);
ints-&gt;push_back(<font color="#0000A0">2</font>);
ints-&gt;push_back(<font color="#0000A0">3</font>);
ints-&gt;push_back(<font color="#0000A0">4</font>);
ints-&gt;push_back(<font color="#0000A0">5</font>);
print_range_nl(boost::make_shared_container_iterator(ints-&gt;begin(),ints),
boost::make_shared_container_iterator(ints-&gt;end(),ints));
}
<B>return</B> <font color="#0000A0">0</font>;
}
</PRE>
Observe that the <tt>shared_container_iterator</tt> type is never
explicitly named. The output from this example is the same as the previous.
<h2><a name="make_range">The Shared Container Iterator Range Generator</a></h2>
<pre>
template &lt;typename Container&gt;
std::pair&lt
typename shared_container_iterator_generator&lt;Container&gt;::type,
typename shared_container_iterator_generator&lt;Container&gt;::type
&gt;
make_shared_container_range(boost::shared_ptr&lt;Container&gt; const&amp; container);
</pre>
Class <tt>shared_container_iterator</tt> is meant primarily to return
via iterators a range of values that we can guarantee will be alive as
long as the iterators are. This is a convenience
function to do just that. This function is equivalent to
<pre>
std::make_pair(make_shared_container_iterator(container-&gt;begin(),container),
make_shared_container_iterator(container-&gt;end(),container));
</pre>
<h3>Example</h3>
In the following example, a range of values is returned as a pair of
<tt>shared_container_iterator</tt>s.
<p>
<a href="./shared_iterator_example3.cpp">shared_iterator_example3.cpp</a>:
<PRE>
<font color="#008040">#include "shared_container_iterator.hpp"</font>
<font color="#008040">#include "boost/shared_ptr.hpp"</font>
<font color="#008040">#include "boost/tuple/tuple.hpp" // for boost::tie</font>
<font color="#008040">#include &lt;algorithm&gt; // for std::copy</font>
<font color="#008040">#include &lt;iostream&gt; </font>
<font color="#008040">#include &lt;vector&gt;</font>
<B>typedef</B> boost::shared_container_iterator_generator&lt; std::vector&lt;<B>int</B>&gt; &gt;::type
function_iterator;
std::pair&lt;function_iterator,function_iterator&gt;
return_range() {
boost::shared_ptr&lt; std::vector&lt;<B>int</B>&gt; &gt; range(<B>new</B> std::vector&lt;<B>int</B>&gt;());
range-&gt;push_back(<font color="#0000A0">0</font>);
range-&gt;push_back(<font color="#0000A0">1</font>);
range-&gt;push_back(<font color="#0000A0">2</font>);
range-&gt;push_back(<font color="#0000A0">3</font>);
range-&gt;push_back(<font color="#0000A0">4</font>);
range-&gt;push_back(<font color="#0000A0">5</font>);
<B>return</B> boost::make_shared_container_range(range);
}
<B>int</B> main() {
function_iterator i,end;
boost::tie(i,end) = return_range();
std::copy(i,end,std::ostream_iterator&lt;<B>int</B>&gt;(std::cout,<font color="#0000FF">","</font>));
std::cout.put(<font color="#0000FF">'\n'</font>);
<B>return</B> <font color="#0000A0">0</font>;
}
</PRE>
Though the <tt>range</tt> object only lives for the duration of the
<tt>return_range</tt> call, the reference counted
<tt>std::vector</tt> will live until <tt>i</tt> and <tt>end</tt>
are both destroyed. The output from this example is the same as
the previous two.
<hr>
<!-- hhmts start -->
Last modified: Wed Sep 4 15:52:17 EST 2002
<!-- hhmts end -->
<p><EFBFBD> Copyright Ronald Garcia 2002. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>

View File

@@ -1,42 +0,0 @@
// (C) Copyright Ronald Garcia 2002. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include "boost/shared_container_iterator.hpp"
#include "boost/shared_ptr.hpp"
#include <algorithm>
#include <iostream>
#include <vector>
typedef boost::shared_container_iterator_generator< std::vector<int> >::type
iterator;
void set_range(iterator& i, iterator& end) {
boost::shared_ptr< std::vector<int> > ints(new std::vector<int>());
ints->push_back(0);
ints->push_back(1);
ints->push_back(2);
ints->push_back(3);
ints->push_back(4);
ints->push_back(5);
i = iterator(ints->begin(),ints);
end = iterator(ints->end(),ints);
}
int main() {
iterator i,end;
set_range(i,end);
std::copy(i,end,std::ostream_iterator<int>(std::cout,","));
std::cout.put('\n');
return 0;
}

View File

@@ -1,42 +0,0 @@
// (C) Copyright Ronald Garcia 2002. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include "boost/shared_container_iterator.hpp"
#include "boost/shared_ptr.hpp"
#include <algorithm>
#include <iterator>
#include <iostream>
#include <vector>
template <typename Iterator>
void print_range_nl (Iterator begin, Iterator end) {
typedef typename std::iterator_traits<Iterator>::value_type val;
std::copy(begin,end,std::ostream_iterator<val>(std::cout,","));
std::cout.put('\n');
}
int main() {
typedef boost::shared_ptr< std::vector<int> > ints_t;
{
ints_t ints(new std::vector<int>());
ints->push_back(0);
ints->push_back(1);
ints->push_back(2);
ints->push_back(3);
ints->push_back(4);
ints->push_back(5);
print_range_nl(boost::make_shared_container_iterator(ints->begin(),ints),
boost::make_shared_container_iterator(ints->end(),ints));
}
return 0;
}

View File

@@ -1,41 +0,0 @@
// (C) Copyright Ronald Garcia 2002. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include "boost/shared_container_iterator.hpp"
#include "boost/shared_ptr.hpp"
#include "boost/tuple/tuple.hpp" // for boost::tie
#include <algorithm> // for std::copy
#include <iostream>
#include <vector>
typedef boost::shared_container_iterator_generator< std::vector<int> >::type
function_iterator;
std::pair<function_iterator,function_iterator>
return_range() {
boost::shared_ptr< std::vector<int> > range(new std::vector<int>());
range->push_back(0);
range->push_back(1);
range->push_back(2);
range->push_back(3);
range->push_back(4);
range->push_back(5);
return boost::make_shared_container_range(range);
}
int main() {
function_iterator i,end;
boost::tie(i,end) = return_range();
std::copy(i,end,std::ostream_iterator<int>(std::cout,","));
std::cout.put('\n');
return 0;
}

View File

@@ -19,7 +19,7 @@ Defined in header
<p> <p>
The transform iterator adaptor augments an iterator by applying some The transform iterator adaptor augments an iterator by applying some
function object to the result of dereferencing the iterator. In other function object to the result of dereferencing the iterator. Another
words, the <tt>operator*</tt> of the transform iterator first words, the <tt>operator*</tt> of the transform iterator first
dereferences the base iterator, passes the result of this to the dereferences the base iterator, passes the result of this to the
function object, and then returns the result. The following function object, and then returns the result. The following

View File

@@ -1,219 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<title>value_initialized</title>
</head>
<body vlink="#800080" link="#0000ff" text="#000000" bgcolor="#ffffff">
<h2><img src="../../c++boost.gif" width="276" height="86">
Header &lt;<a href="../../boost/utility/value_init.hpp">boost/utility/value_init.hpp</a>&gt;
</h2>
<h2>Contents</h2>
<dl>
<dt><a href="#intro">Rationale</a></dt>
<dt><a href="#rationale">Introduction</a></dt>
</dl>
<ul>
<li><a href="#valueinit">value-initialization</a></li>
<li><a href="#valueinitsyn">value-initialization syntax</a></li>
</ul>
<dl class="page-index">
<dt><a href="#types">Types</a></dt>
</dl>
<ul>
<li><a href="#val_init"><code>value_initialized&lt;&gt;</code></a></li>
</ul>
<a href="#acknowledgements">Acknowledgements</a><br>
<br>
<hr>
<h2><a name="rationale"></a>Rationale</h2>
<p>Constructing and initializing objects in a generic way is difficult in
C++. The problem is that there are several different rules that apply
for initialization. Depending on the type, the value of a newly constructed
object can be zero-initialized (logically 0), default-constructed (using
the default constructor), or indeterminate. When writing generic code,
this problem must be addressed. <code>value_initialized</code> provides
a solution with consistent syntax for value initialization of scalar,
union and class types. <br>
</p>
<h2><a name="into"></a>Introduction</h2>
<p>The C++ standard [<a href="#references">1</a>] contains the definitions
of <code>zero-initialization</code> and <code>default-initialization</code>.
Informally, zero-initialization means that the object is given the initial
value 0 (converted to the type) and default-initialization means that
POD [<a href="#references">2</a>] types are zero-initialized, while class
types are initialized with their corresponding default constructors. A
<i>declaration</i> can contain an <i>initializer</i>, which specifies the
object's initial value. The initializer can be just '()', which states that
the object shall be default-initialized (but see below). However, if a <i>declaration</i>
has no <i>initializer</i> and it is of a non-<code>const</code>, non-<code>static</code>
POD type, the initial value is indeterminate:<cite>(see &sect;8.5 for the
accurate definitions).</cite></p>
<pre>int x ; // no initializer. x value is indeterminate.<br>std::string s ; // no initializer, s is default-constructed.<br><br>int y = int() ; <br>// y is initialized using copy-initialization<br>// but the temporary uses an empty set of parentheses as the initializer,<br>// so it is default-constructed.<br>// A default constructed POD type is zero-initialized,<br>// therefore, y == 0.<br><br>void foo ( std::string ) ;<br>foo ( std::string() ) ; <br>// the temporary string is default constructed <br>// as indicated by the initializer () </pre>
<h3><a name="valueinit">value-initialization</a></h3>
<p>The first <a
href="http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/cwg_defects.html">Technical
Corrigendum for the C++ Standard</a> (TC1), whose draft was released to
the public in November 2001, introduced <a
href="http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/cwg_defects.html#178">Core
Issue 178</a> (among many other issues, of course).</p>
<p> That issue introduced the new concept of <code>value-initialization</code>
(it also fixed the wording for zero-initialization). Informally, value-initialization
is similar to default-initialization with the exception that in some cases
non-static data members and base class sub-objects are also value-initialized.
The difference is that an object that is value-initialized won't have
(or at least is less likely to have) indeterminate values for data members
and base class sub-objects; unlike the case of an object default constructed.
(see Core Issue 178 for a normative description).</p>
<p>In order to specify value-initialization of an object we need to use the
empty-set initializer: (). </p>
<p><i>(but recall that the current C++ Standard states that '()' invokes default-initialization,
not value-initialization)</i></p>
<p>As before, a declaration with no intializer specifies default-initialization,
and a declaration with a non-empty initializer specifies copy (=xxx) or
direct (xxx) initialization. </p>
<pre>template&lt;class T&gt; void eat(T);<br>int x ; // indeterminate initial value.<br>std::string s; // default-initialized.<br>eat ( int() ) ; // value-initialized<br>eat ( std::string() ) ; // value-initialied</pre>
<h4><a name="valueinitsyn">value-initialization</a> syntax</h4>
<p>Value initialization is specified using (). However, the empty set of
parentheses is not permitted by the syntax of initializers because it is
parsed as the declaration of a function taking no arguments: </p>
<pre>int x() ; // declares function int(*)()<br>int y ( int() ) ; // decalares function int(*)( int(*)() )</pre>
<p>Thus, the empty () must be put in some other initialization context.</p>
<p>One alternative is to use copy-initialization syntax:</p>
<pre>int x = int() ;</pre>
<p>This works perfectly fine for POD types. But for non-POD class types,
copy-initialization searches for a suitable constructor, which could be,
for instance, the copy-constructor (it also searches for a suitable conversion
sequence but this doesn't apply in this context). For an arbitrary unknown
type, using this syntax may not have the value-initialization effect intended
because we don't know if a copy from a default constructed object is exactly
the same as a default constructed object, and the compiler is allowed (in
some cases), but never required to, optimize the copy away.</p>
<p>One possible generic solution is to use value-initialization of a non static
data member:</p>
<pre>template&lt;class T&gt; <br>struct W <br>{<br> // value-initialization of 'data' here.<br> W() : data() {}<br> T data ;<br>} ;<br>W&lt;int&gt; w ;<br>// w.data is value-initialized for any type. </pre>
<p><code>This is the solution supplied by the value_initialized&lt;&gt; template
class.</code></p>
<h2><a name="types"></a>Types</h2>
<h2><a name="val_init"><code>template class value_initialized&lt;T&gt;</code></a></h2>
<pre>namespace boost {<br><br>template&lt;class T&gt;<br>class value_initialized<br>{<br> public :<br> value_initialized() : x() {}<br> operator T&amp;() const { return x ; }<br> T&amp; data() const { return x ; }<br><br> private :<br> <i>impll-defined</i> x ;<br>} ;<br><br>template&lt;class T&gt;<br>T const&amp; get ( value_initialized&lt;T&gt; const&amp; x )<br>{<br> return x.data() ;<br>}<br><br>template&lt;class T&gt;<br>T&amp; get ( value_initialized&lt;T&gt;&amp; x )<br>{<br> return x.data() ;<br>}<br><br>} // namespace boost<br></pre>
<p>An object of this template class is a <code>T</code>-wrapper convertible
to <code>'T&amp;'</code> whose wrapped object (data member of type <code>T</code>)
is <a href="#valueinit">value-initialized</a> upon default-initialization
of this wrapper class: </p>
<pre>int zero = 0 ;<br>value_initialized&lt;int&gt; x ;<br>assert ( x == zero ) ;<br><br>std::string def ;<br>value_initialized&lt; std::string &gt; y ;<br>assert ( y == def ) ;<br></pre>
<p>The purpose of this wrapper is to provide a consistent syntax for value
initialization of scalar, union and class types (POD and non-POD) since
the correct syntax for value initialization varies (see <a
href="#valueinitsyn">value-initialization syntax</a>)</p>
<p>The wrapped object can be accessed either through the conversion operator
<code>T&amp;</code>, the member function <code>data()</code>, or the
non-member function <code>get()</code>: </p>
<pre>void watch(int);<br>value_initialized&lt;int&gt; x;<br><br>watch(x) ; // operator T&amp; used.<br>watch(x.data());<br>watch( get(x) ) // function get() used</pre>
<p>Both <code>const</code> and non-<code>const</code> objects can be wrapped.
Mutable objects can be modified directly from within the wrapper but constant
objects cannot:</p>
<pre>value_initialized&lt;int&gt; x ; <br>static_cast&lt;int&amp;&gt;(x) = 1 ; // OK<br>get(x) = 1 ; // OK<br><br>value_initialized&lt;int const&gt; y ; <br>static_cast&lt;int&amp;&gt;(y) = 1 ; // ERROR: cannot cast to int&amp;<br>static_cast&lt;int const&amp;&gt;(y) = 1 ; // ERROR: cannot modify a const value<br>get(y) = 1 ; // ERROR: cannot modify a const value</pre>
<h3>Warning:</h3>
<p>Both the conversion operator and the <code>data()</code> member function
are <code>const</code> in order to allow access to the wrapped object
from a constant wrapper:</p>
<pre>void foo(int);<br>value_initialized&lt;int&gt; const x ;<br>foo(x);<br></pre>
<p>But notice that this conversion operator is to <code>T&amp;</code> although
it is itself <code>const</code>. As a consequence, if <code>T</code> is
a non-<code>const</code> type, you can modify the wrapped object even from
within a constant wrapper:</p>
<pre>value_initialized&lt;int&gt; const x_c ;<br>int&amp; xr = x_c ; // OK, conversion to int&amp; available even though x_c is itself const.<br>xr = 2 ; </pre>
<p>The reason for this obscure behavior is that some commonly used compilers
just don't accept the following valid code:</p>
<pre>struct X<br>{<br> operator int&amp;() ;<br> operator int const&amp;() const ; <br>};<br>X x ;<br>(x == 1 ) ; // ERROR HERE!</pre>
<p>These compilers complain about ambiguity between the conversion operators.
This complaint is incorrect, but the only workaround that I know of is
to provide only one of them, which leads to the obscure behavior just explained.<br>
</p>
<h3>Recommended practice: The non-member get() idiom</h3>
<p>The obscure behavior of being able to modify a non-<code>const</code>
wrapped object from within a constant wrapper can be avoided if access to
the wrapped object is always performed with the <code>get()</code> idiom:</p>
<pre>value_initialized&lt;int&gt; x ;<br>get(x) = 1 ; // OK<br><br>value_initialized&lt;int const&gt; cx ;<br>get(x) = 1 ; // ERROR: Cannot modify a const object<br><br>value_initialized&lt;int&gt; const x_c ;<br>get(x_c) = 1 ; // ERROR: Cannot modify a const object<br><br>value_initialized&lt;int const&gt; const cx_c ;<br>get(cx_c) = 1 ; // ERROR: Cannot modify a const object<br></pre>
<h3><a name="references">References</a></h3>
[1] The C++ Standard, ISO/IEC 14882:98 <br>
[2] Plain Old Data
<h3><a name="acknowledgements"></a>Acknowledgements</h3>
value_initialized was developed by Fernando Cacciola, with help and
suggestions from David Abrahams and Darin Adler.<br>
Special thanks to Bj<42>rn Karlsson who carefully edited and completed this documentation.
<pre>&nbsp;</pre>
<hr>
<p>Revised 19 September 2002</p>
<p>&copy; Copyright boost.org 2002. Permission to copy, use, modify, sell
and distribute this document is granted provided this copyright notice appears
in all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
<p>Developed by <a href="mailto:fernando_cacciola@hotmail.com">Fernando Cacciola</a>,
the latest version of this file can be found at <a
href="http://www.boost.org">www.boost.org</a>, and the boost discussion list
at <a href="http://www.yahoogroups.com/list/boost">www.yahoogroups.com/list/boost</a>.
</p>
<br>
<br>
</body>
</html>

View File

@@ -1,119 +0,0 @@
// (C) 2002, Fernando Luis Cacciola Carballal.
//
// This material is provided "as is", with absolutely no warranty expressed
// or implied. Any use is at your own risk.
//
// Permission to use or copy this software for any purpose is hereby granted
// without fee, provided the above notices are retained on all copies.
// Permission to modify the code and to distribute modified code is granted,
// provided the above notices are retained, and a notice that the code was
// modified is included with the above copyright notice.
//
// Test program for "boost/utility/value_init.hpp"
//
// Initial: 21 Agu 2002
#include <iostream>
#include <string>
#include "boost/utility/value_init.hpp"
#ifdef __BORLANDC__
#pragma hdrstop
#endif
#define BOOST_INCLUDE_MAIN
#include "boost/test/test_tools.hpp"
//
// Sample POD type
//
struct POD
{
POD () : c(0), i(0), f(0) {}
POD ( char c_, int i_, float f_ ) : c(c_), i(i_), f(f_) {}
friend std::ostream& operator << ( std::ostream& os, POD const& pod )
{ return os << '(' << pod.c << ',' << pod.i << ',' << pod.f << ')' ; }
friend bool operator == ( POD const& lhs, POD const& rhs )
{ return lhs.f == rhs.f && lhs.c == rhs.c && lhs.i == rhs.i ; }
float f;
char c;
int i;
} ;
//
// Sample non POD type
//
struct NonPODBase
{
virtual ~NonPODBase() {}
} ;
struct NonPOD : NonPODBase
{
NonPOD () : id() {}
NonPOD ( std::string const& id_) : id(id_) {}
friend std::ostream& operator << ( std::ostream& os, NonPOD const& npod )
{ return os << '(' << npod.id << ')' ; }
friend bool operator == ( NonPOD const& lhs, NonPOD const& rhs )
{ return lhs.id == rhs.id ; }
std::string id ;
} ;
template<class T>
void test ( T const& y, T const& z )
{
boost::value_initialized<T> x ;
BOOST_TEST ( y == x ) ;
BOOST_TEST ( y == get(x) ) ;
static_cast<T&>(x) = z ;
get(x) = z ;
BOOST_TEST ( x == z ) ;
boost::value_initialized<T> const x_c ;
BOOST_TEST ( y == x_c ) ;
BOOST_TEST ( y == get(x_c) ) ;
static_cast<T&>(x_c) = z ;
BOOST_TEST ( x_c == z ) ;
#ifdef PRODUCE_ERROR_1
get(x_c) = z ; // this should produce an ERROR
#endif
boost::value_initialized<T const> cx ;
BOOST_TEST ( y == cx ) ;
BOOST_TEST ( y == get(cx) ) ;
#ifdef PRODUCE_ERROR_2
get(cx) = z ; // this should produce an ERROR
#endif
boost::value_initialized<T const> const cx_c ;
BOOST_TEST ( y == cx_c ) ;
BOOST_TEST ( y == get(cx_c) ) ;
#ifdef PRODUCE_ERROR_3
get(cx_c) = z ; // this should produce an ERROR
#endif
}
int test_main(int, char **)
{
test( 0,1234 ) ;
test( 0.0,12.34 ) ;
test( POD(0,0,0.0), POD('a',1234,56.78) ) ;
test( NonPOD( std::string() ), NonPOD( std::string("something") ) ) ;
return 0;
}
unsigned int expected_failures = 0;