Files
boost_integer/include/boost/integer/discrete_log.hpp

161 lines
5.0 KiB
C++
Raw Normal View History

/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
* Two methods of computing the discrete logarithm over the multiplicative group of integers mod p.
*/
#ifndef BOOST_INTEGER_DISCRETE_LOG_HPP
#define BOOST_INTEGER_DISCRETE_LOG_HPP
#include <limits>
#include <unordered_map>
#include <boost/optional.hpp>
#include <boost/format.hpp>
#include <boost/multiprecision/integer.hpp>
#include <boost/integer/common_factor_rt.hpp>
#include <boost/integer/mod_inverse.hpp>
namespace boost { namespace integer {
// base^^x = a mod p <-> x = log_base(a) mod p
template<class Z>
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z modulus)
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
"The discrete log works on integral types.\n");
if (base <= 1)
{
auto e = boost::format("The base b is %1%, but must be > 1.\n") % base;
throw std::domain_error(e.str());
}
if (modulus < 3)
{
auto e = boost::format("The modulus must be > 2, but is %1%") % modulus;
throw std::domain_error(e.str());
}
if (arg < 1)
{
auto e = boost::format("The argument must be > 0, but is %1%") % arg;
throw std::domain_error(e.str());
}
if (base >= modulus || arg >= modulus)
{
if (base >= modulus)
{
auto e = boost::format("Error computing the discrete log: The base %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % base % modulus;
throw std::domain_error(e.str());
}
if (arg >= modulus)
{
auto e = boost::format("Error computing the discrete log: The argument %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % arg % modulus;
throw std::domain_error(e.str());
}
}
if (arg == 1)
{
return 0;
}
Z s = 1;
for (Z i = 1; i < modulus; ++i)
{
s = (s * base) % modulus;
if (s == arg)
{
// Maybe a bit trivial assertion. But still a negligible fraction of the total compute time.
BOOST_ASSERT(arg == boost::multiprecision::powm(base, i, modulus));
return i;
}
}
return {};
}
template<class Z>
class bsgs_discrete_log
{
public:
bsgs_discrete_log(Z base, Z modulus) : m_p{modulus}, m_base{base}
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
"The baby-step, giant-step discrete log works on integral types.\n");
if (base <= 1)
{
throw std::logic_error("The base must be > 1.\n");
}
if (modulus < 3)
{
throw std::logic_error("The modulus must be > 2.\n");
}
if (base >= modulus)
{
throw std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n");
}
m_root_p = boost::multiprecision::sqrt(modulus);
if (m_root_p*m_root_p != modulus)
{
m_root_p += 1;
}
auto x = mod_inverse(base, modulus);
if (!x)
{
auto d = boost::integer::gcd(base, modulus);
auto e = boost::format("The gcd of the base %1% and the modulus %2% is %3% != 1, hence the discrete log is not guaranteed to exist, which breaks the baby-step giant step algorithm. If you don't require existence proof for all inputs, use trial multiplication.\n") % base % modulus % d;
throw std::logic_error(e.str());
}
m_inv_base_pow_m = boost::multiprecision::powm(x.value(), m_root_p, modulus);
m_lookup_table.reserve(m_root_p);
// Now the expensive part:
Z k = 1;
for (Z j = 0; j < m_root_p; ++j)
{
m_lookup_table.emplace(k, j);
k = k*base % modulus;
}
}
boost::optional<Z> operator()(Z arg) const
{
Z ami = m_inv_base_pow_m;
Z k = arg % m_p;
if(k == 0)
{
return {};
}
for (Z i = 0; i < m_lookup_table.size(); ++i)
{
auto it = m_lookup_table.find(k);
if (it != m_lookup_table.end())
{
Z log_b_arg = (i*m_root_p + it->second) % m_p;
// This computation of the modular exponentiation is laughably quick relative to computing the discrete log.
// Why not put an assert here for our peace of mind?
BOOST_ASSERT(arg == boost::multiprecision::powm(m_base, log_b_arg, m_p));
return log_b_arg;
}
ami = (ami*m_inv_base_pow_m) % m_p;
k = k * ami % m_p;
}
return {};
}
private:
Z m_p;
Z m_base;
Z m_root_p;
Z m_inv_base_pow_m;
std::unordered_map<Z, Z> m_lookup_table;
};
}}
#endif