Implemented Wolf version of LPC18XX startup code to eliminate NXP code from our repo. Cleanup of trailing spaces and convert tabs to spaces.

This commit is contained in:
David Garske
2015-11-19 19:06:40 -08:00
parent e51f99a5c3
commit 6abfaf6df4
5 changed files with 471 additions and 677 deletions

View File

@ -1,66 +1,81 @@
/*
* lpc_18xx_port.c
/* lpc_18xx_port.c
*
* Created on: Nov 4, 2015
* Author: davidgarske
* Copyright (C) 2006-2015 wolfSSL Inc.
*
* This file is part of wolfSSL. (formerly known as CyaSSL)
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include "board.h"
#include "otp_18xx_43xx.h" /* For RNG */
#include "timer_18xx_43xx.h"
static uint32_t mTimeInit = 0;
#define TIMER_SCALER 1000000
#define TIMER_SCALER 1000000
static void init_time(void)
{
if(mTimeInit == 0) {
uint32_t timerFreq;
if(mTimeInit == 0) {
uint32_t timerFreq;
/* Set current time for RTC 2:00:00PM, 2012-10-05 */
RTC_TIME_T FullTime;
/* Set current time for RTC 2:00:00PM, 2012-10-05 */
RTC_TIME_T FullTime;
Chip_RTC_Init(LPC_RTC);
Chip_RTC_Init(LPC_RTC);
FullTime.time[RTC_TIMETYPE_SECOND] = 0;
FullTime.time[RTC_TIMETYPE_MINUTE] = 0;
FullTime.time[RTC_TIMETYPE_HOUR] = 14;
FullTime.time[RTC_TIMETYPE_DAYOFMONTH] = 5;
FullTime.time[RTC_TIMETYPE_DAYOFWEEK] = 5;
FullTime.time[RTC_TIMETYPE_DAYOFYEAR] = 279;
FullTime.time[RTC_TIMETYPE_MONTH] = 10;
FullTime.time[RTC_TIMETYPE_YEAR] = 2012;
FullTime.time[RTC_TIMETYPE_SECOND] = 0;
FullTime.time[RTC_TIMETYPE_MINUTE] = 0;
FullTime.time[RTC_TIMETYPE_HOUR] = 14;
FullTime.time[RTC_TIMETYPE_DAYOFMONTH] = 5;
FullTime.time[RTC_TIMETYPE_DAYOFWEEK] = 5;
FullTime.time[RTC_TIMETYPE_DAYOFYEAR] = 279;
FullTime.time[RTC_TIMETYPE_MONTH] = 10;
FullTime.time[RTC_TIMETYPE_YEAR] = 2012;
Chip_RTC_SetFullTime(LPC_RTC, &FullTime);
Chip_RTC_SetFullTime(LPC_RTC, &FullTime);
/* Enable RTC (starts increase the tick counter and second counter register) */
Chip_RTC_Enable(LPC_RTC, ENABLE);
/* Enable RTC (starts increase the tick counter and second counter register) */
Chip_RTC_Enable(LPC_RTC, ENABLE);
/* Enable timer 1 clock and reset it */
Chip_TIMER_Init(LPC_TIMER2);
Chip_RGU_TriggerReset(RGU_TIMER2_RST);
while (Chip_RGU_InReset(RGU_TIMER2_RST)) {}
/* Enable timer 1 clock and reset it */
Chip_TIMER_Init(LPC_TIMER2);
Chip_RGU_TriggerReset(RGU_TIMER2_RST);
while (Chip_RGU_InReset(RGU_TIMER2_RST)) {}
/* Get timer peripheral clock rate */
timerFreq = Chip_Clock_GetRate(CLK_MX_TIMER2);
/* Get timer peripheral clock rate */
timerFreq = Chip_Clock_GetRate(CLK_MX_TIMER2);
/* Timer setup */
Chip_TIMER_Reset(LPC_TIMER2);
Chip_TIMER_PrescaleSet(LPC_TIMER2, timerFreq/TIMER_SCALER);
Chip_TIMER_Enable(LPC_TIMER2);
/* Timer setup */
Chip_TIMER_Reset(LPC_TIMER2);
Chip_TIMER_PrescaleSet(LPC_TIMER2, timerFreq/TIMER_SCALER);
Chip_TIMER_Enable(LPC_TIMER2);
mTimeInit = 1;
}
mTimeInit = 1;
}
}
double current_time()
{
//RTC_TIME_T FullTime;
uint32_t timerMs;
//RTC_TIME_T FullTime;
uint32_t timerMs;
init_time();
timerMs = Chip_TIMER_ReadCount(LPC_TIMER2);
init_time();
timerMs = Chip_TIMER_ReadCount(LPC_TIMER2);
//Chip_RTC_GetFullTime(LPC_RTC, &FullTime);
//(double)FullTime.time[RTC_TIMETYPE_SECOND]
//Chip_RTC_GetFullTime(LPC_RTC, &FullTime);
//(double)FullTime.time[RTC_TIMETYPE_SECOND]
return (double)timerMs/TIMER_SCALER;
}
@ -71,23 +86,23 @@ static uint32_t mRandInit = 0;
static uint32_t mRandIndex = 0;
uint32_t rand_gen(void)
{
uint32_t rand = 0;
uint32_t status = LPC_OK;
if(mRandIndex == 0) {
if(mRandInit == 0) {
Chip_OTP_Init();
mRandInit = 1;
}
status = Chip_OTP_GenRand();
}
if(status == LPC_OK) {
rand = mRandData[mRandIndex];
}
else {
printf("GenRand Failed 0x%x\n", status);
}
if(++mRandIndex > 4) {
mRandIndex = 0;
}
return rand;
uint32_t rand = 0;
uint32_t status = LPC_OK;
if(mRandIndex == 0) {
if(mRandInit == 0) {
Chip_OTP_Init();
mRandInit = 1;
}
status = Chip_OTP_GenRand();
}
if(status == LPC_OK) {
rand = mRandData[mRandIndex];
}
else {
printf("GenRand Failed 0x%x\n", status);
}
if(++mRandIndex > 4) {
mRandIndex = 0;
}
return rand;
}

View File

@ -1,484 +0,0 @@
//*****************************************************************************
// LPC18xx Microcontroller Startup code for use with LPCXpresso IDE
//
// Version : 141204
//*****************************************************************************
//
// Copyright(C) NXP Semiconductors, 2013-2014
// All rights reserved.
//
// Software that is described herein is for illustrative purposes only
// which provides customers with programming information regarding the
// LPC products. This software is supplied "AS IS" without any warranties of
// any kind, and NXP Semiconductors and its licensor disclaim any and
// all warranties, express or implied, including all implied warranties of
// merchantability, fitness for a particular purpose and non-infringement of
// intellectual property rights. NXP Semiconductors assumes no responsibility
// or liability for the use of the software, conveys no license or rights under any
// patent, copyright, mask work right, or any other intellectual property rights in
// or to any products. NXP Semiconductors reserves the right to make changes
// in the software without notification. NXP Semiconductors also makes no
// representation or warranty that such application will be suitable for the
// specified use without further testing or modification.
//
// Permission to use, copy, modify, and distribute this software and its
// documentation is hereby granted, under NXP Semiconductors' and its
// licensor's relevant copyrights in the software, without fee, provided that it
// is used in conjunction with NXP Semiconductors microcontrollers. This
// copyright, permission, and disclaimer notice must appear in all copies of
// this code.
//*****************************************************************************
#if defined (__cplusplus)
#ifdef __REDLIB__
#error Redlib does not support C++
#else
//*****************************************************************************
//
// The entry point for the C++ library startup
//
//*****************************************************************************
extern "C" {
extern void __libc_init_array(void);
}
#endif
#endif
#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))
//*****************************************************************************
#if defined (__cplusplus)
extern "C" {
#endif
//*****************************************************************************
#if defined (__USE_CMSIS) || defined (__USE_LPCOPEN)
// Declaration of external SystemInit function
extern void SystemInit(void);
#endif
//*****************************************************************************
//
// Forward declaration of the default handlers. These are aliased.
// When the application defines a handler (with the same name), this will
// automatically take precedence over these weak definitions
//
//*****************************************************************************
void ResetISR(void);
WEAK void NMI_Handler(void);
WEAK void HardFault_Handler(void);
WEAK void MemManage_Handler(void);
WEAK void BusFault_Handler(void);
WEAK void UsageFault_Handler(void);
WEAK void SVC_Handler(void);
WEAK void DebugMon_Handler(void);
WEAK void PendSV_Handler(void);
WEAK void SysTick_Handler(void);
WEAK void IntDefaultHandler(void);
//*****************************************************************************
//
// Forward declaration of the specific IRQ handlers. These are aliased
// to the IntDefaultHandler, which is a 'forever' loop. When the application
// defines a handler (with the same name), this will automatically take
// precedence over these weak definitions
//
//*****************************************************************************
void DAC_IRQHandler(void) ALIAS(IntDefaultHandler);
void DMA_IRQHandler(void) ALIAS(IntDefaultHandler);
void FLASHEEPROM_IRQHandler(void) ALIAS(IntDefaultHandler);
void ETH_IRQHandler(void) ALIAS(IntDefaultHandler);
void SDIO_IRQHandler(void) ALIAS(IntDefaultHandler);
void LCD_IRQHandler(void) ALIAS(IntDefaultHandler);
void USB0_IRQHandler(void) ALIAS(IntDefaultHandler);
void USB1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SCT_IRQHandler(void) ALIAS(IntDefaultHandler);
void RIT_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER0_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER1_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER2_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER3_IRQHandler(void) ALIAS(IntDefaultHandler);
void MCPWM_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C1_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART0_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART2_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART3_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2S0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2S1_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPIFI_IRQHandler(void) ALIAS(IntDefaultHandler);
void SGPIO_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO0_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO1_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO2_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO3_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO4_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO5_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO6_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO7_IRQHandler(void) ALIAS(IntDefaultHandler);
void GINT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void GINT1_IRQHandler(void) ALIAS(IntDefaultHandler);
void EVRT_IRQHandler(void) ALIAS(IntDefaultHandler);
void CAN1_IRQHandler(void) ALIAS(IntDefaultHandler);
void ATIMER_IRQHandler(void) ALIAS(IntDefaultHandler);
void RTC_IRQHandler(void) ALIAS(IntDefaultHandler);
void WDT_IRQHandler(void) ALIAS(IntDefaultHandler);
void CAN0_IRQHandler(void) ALIAS(IntDefaultHandler);
void QEI_IRQHandler(void) ALIAS(IntDefaultHandler);
//*****************************************************************************
//
// The entry point for the application.
// __main() is the entry point for Redlib based applications
// main() is the entry point for Newlib based applications
//
//*****************************************************************************
#if defined (__REDLIB__)
extern void __main(void);
#endif
extern int main(void);
//*****************************************************************************
//
// External declaration for the pointer to the stack top from the Linker Script
//
//*****************************************************************************
extern void _vStackTop(void);
//*****************************************************************************
#if defined (__cplusplus)
} // extern "C"
#endif
//*****************************************************************************
//
// The vector table.
// This relies on the linker script to place at correct location in memory.
//
//*****************************************************************************
extern void (* const g_pfnVectors[])(void);
__attribute__ ((used,section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
// Core Level - CM3
&_vStackTop, // The initial stack pointer
ResetISR, // The reset handler
NMI_Handler, // The NMI handler
HardFault_Handler, // The hard fault handler
MemManage_Handler, // The MPU fault handler
BusFault_Handler, // The bus fault handler
UsageFault_Handler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
SVC_Handler, // SVCall handler
DebugMon_Handler, // Debug monitor handler
0, // Reserved
PendSV_Handler, // The PendSV handler
SysTick_Handler, // The SysTick handler
// Chip Level - LPC18
DAC_IRQHandler, // 16
0, // 17
DMA_IRQHandler, // 18
0, // 19
FLASHEEPROM_IRQHandler, // 20 ORed flash Bank A, flash Bank B, EEPROM interrupts
ETH_IRQHandler, // 21
SDIO_IRQHandler, // 22
LCD_IRQHandler, // 23
USB0_IRQHandler, // 24
USB1_IRQHandler, // 25
SCT_IRQHandler, // 26
RIT_IRQHandler, // 27
TIMER0_IRQHandler, // 28
TIMER1_IRQHandler, // 29
TIMER2_IRQHandler, // 30
TIMER3_IRQHandler, // 31
MCPWM_IRQHandler, // 32
ADC0_IRQHandler, // 33
I2C0_IRQHandler, // 34
I2C1_IRQHandler, // 35
0, // 36
ADC1_IRQHandler, // 37
SSP0_IRQHandler, // 38
SSP1_IRQHandler, // 39
UART0_IRQHandler, // 40
UART1_IRQHandler, // 41
UART2_IRQHandler, // 42
UART3_IRQHandler, // 43
I2S0_IRQHandler, // 44
I2S1_IRQHandler, // 45
SPIFI_IRQHandler, // 46
SGPIO_IRQHandler, // 47
GPIO0_IRQHandler, // 48
GPIO1_IRQHandler, // 49
GPIO2_IRQHandler, // 50
GPIO3_IRQHandler, // 51
GPIO4_IRQHandler, // 52
GPIO5_IRQHandler, // 53
GPIO6_IRQHandler, // 54
GPIO7_IRQHandler, // 55
GINT0_IRQHandler, // 56
GINT1_IRQHandler, // 57
EVRT_IRQHandler, // 58
CAN1_IRQHandler, // 59
0, // 60
0, // 61
ATIMER_IRQHandler, // 62
RTC_IRQHandler, // 63
0, // 64
WDT_IRQHandler, // 65
0, // 66
CAN0_IRQHandler, // 67
QEI_IRQHandler, // 68
};
//*****************************************************************************
// Functions to carry out the initialization of RW and BSS data sections. These
// are written as separate functions rather than being inlined within the
// ResetISR() function in order to cope with MCUs with multiple banks of
// memory.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void data_init(unsigned int romstart, unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int *pulSrc = (unsigned int*) romstart;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4)
*pulDest++ = *pulSrc++;
}
__attribute__ ((section(".after_vectors")))
void bss_init(unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4)
*pulDest++ = 0;
}
//*****************************************************************************
// The following symbols are constructs generated by the linker, indicating
// the location of various points in the "Global Section Table". This table is
// created by the linker via the Code Red managed linker script mechanism. It
// contains the load address, execution address and length of each RW data
// section and the execution and length of each BSS (zero initialized) section.
//*****************************************************************************
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end;
//*****************************************************************************
// Reset entry point for your code.
// Sets up a simple runtime environment and initializes the C/C++
// library.
//
//*****************************************************************************
void
ResetISR(void) {
// *************************************************************
// The following conditional block of code manually resets as
// much of the peripheral set of the LPC18 as possible. This is
// done because the LPC18 does not provide a means of triggering
// a full system reset under debugger control, which can cause
// problems in certain circumstances when debugging.
//
// You can prevent this code block being included if you require
// (for example when creating a final executable which you will
// not debug) by setting the define 'DONT_RESET_ON_RESTART'.
//
#ifndef DONT_RESET_ON_RESTART
// Disable interrupts
__asm volatile ("cpsid i");
// equivalent to CMSIS '__disable_irq()' function
unsigned int *RESET_CONTROL = (unsigned int *) 0x40053100;
// LPC_RGU->RESET_CTRL0 @ 0x40053100
// LPC_RGU->RESET_CTRL1 @ 0x40053104
// Note that we do not use the CMSIS register access mechanism,
// as there is no guarantee that the project has been configured
// to use CMSIS.
// Write to LPC_RGU->RESET_CTRL0
*(RESET_CONTROL+0) = 0x10DF0000;
// GPIO_RST|AES_RST|ETHERNET_RST|SDIO_RST|DMA_RST|
// USB1_RST|USB0_RST|LCD_RST
// Write to LPC_RGU->RESET_CTRL1
*(RESET_CONTROL+1) = 0x00DFF7FF;
// CAN0_RST|CAN1_RST|I2S_RST|SSP1_RST|SSP0_RST|
// I2C1_RST|I2C0_RST|UART3_RST|UART1_RST|UART1_RST|UART0_RST|
// DAC_RST|ADC1_RST|ADC0_RST|QEI_RST|MOTOCONPWM_RST|SCT_RST|
// RITIMER_RST|TIMER3_RST|TIMER2_RST|TIMER1_RST|TIMER0_RST
// Clear all pending interrupts in the NVIC
volatile unsigned int *NVIC_ICPR = (unsigned int *) 0xE000E280;
unsigned int irqpendloop;
for (irqpendloop = 0; irqpendloop < 8; irqpendloop++) {
*(NVIC_ICPR+irqpendloop)= 0xFFFFFFFF;
}
// Reenable interrupts
__asm volatile ("cpsie i");
// equivalent to CMSIS '__enable_irq()' function
#endif // ifndef DONT_RESET_ON_RESTART
// *************************************************************
#if defined (__USE_LPCOPEN)
SystemInit();
#endif
//
// Copy the data sections from flash to SRAM.
//
unsigned int LoadAddr, ExeAddr, SectionLen;
unsigned int *SectionTableAddr;
// Load base address of Global Section Table
SectionTableAddr = &__data_section_table;
// Copy the data sections from flash to SRAM.
while (SectionTableAddr < &__data_section_table_end) {
LoadAddr = *SectionTableAddr++;
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
data_init(LoadAddr, ExeAddr, SectionLen);
}
// At this point, SectionTableAddr = &__bss_section_table;
// Zero fill the bss segment
while (SectionTableAddr < &__bss_section_table_end) {
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
bss_init(ExeAddr, SectionLen);
}
// ******************************
// Check to see if we are running the code from a non-zero
// address (eg RAM, external flash), in which case we need
// to modify the VTOR register to tell the CPU that the
// vector table is located at a non-0x0 address.
// Note that we do not use the CMSIS register access mechanism,
// as there is no guarantee that the project has been configured
// to use CMSIS.
unsigned int * pSCB_VTOR = (unsigned int *) 0xE000ED08;
if ((unsigned int *)g_pfnVectors!=(unsigned int *) 0x00000000) {
// CMSIS : SCB->VTOR = <address of vector table>
*pSCB_VTOR = (unsigned int)g_pfnVectors;
}
#if defined (__USE_CMSIS)
SystemInit();
#endif
#if defined (__cplusplus)
//
// Call C++ library initialisation
//
__libc_init_array();
#endif
#if defined (__REDLIB__)
// Call the Redlib library, which in turn calls main()
__main() ;
#else
main();
#endif
//
// main() shouldn't return, but if it does, we'll just enter an infinite loop
//
while (1) {
;
}
}
//*****************************************************************************
// Default exception handlers. Override the ones here by defining your own
// handler routines in your application code.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void NMI_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void HardFault_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void MemManage_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void BusFault_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void UsageFault_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void SVC_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void DebugMon_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void PendSV_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void SysTick_Handler(void)
{
while(1)
{
}
}
//*****************************************************************************
//
// Processor ends up here if an unexpected interrupt occurs or a specific
// handler is not present in the application code.
//
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void IntDefaultHandler(void)
{
while(1)
{
}
}

View File

@ -0,0 +1,352 @@
/* lpc_18xx_startup.c
*
* Copyright (C) 2006-2015 wolfSSL Inc.
*
* This file is part of wolfSSL. (formerly known as CyaSSL)
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include "board.h"
#include <stdint.h>
#include <stdio.h>
/* Top of stack location */
extern void _vStackTop(void);
/* Memory locations */
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end;
/* Copy memory: src=Source, dst_beg=Destination Begin, dst_end=Destination End */
__attribute__ ((section(".after_vectors")))
void memcpy32(uint32_t* src, uint32_t* dst_beg, uint32_t len)
{
unsigned int i;
for (i = 0; i < len; i += sizeof(uint32_t)) {
*dst_beg++ = *src++;
}
}
/* Zero address in range */
__attribute__ ((section(".after_vectors")))
void meminit32(uint32_t* start, uint32_t len)
{
unsigned int i;
for (i = 0; i < len; i += sizeof(uint32_t)) {
*start++ = 0;
}
}
/* Reset Entry Point */
void ResetISR(void)
{
unsigned int irqPendLoop;
unsigned int *SectionTableAddr;
unsigned int LoadAddr, ExeAddr, SectionLen;
unsigned int *RESET_CONTROL = (unsigned int *) 0x40053100;
volatile unsigned int *NVIC_ICPR = (unsigned int *) 0xE000E280;
/* Chip cleanup/reset */
__asm volatile ("cpsid i"); /* Disable interrupts */
/* Write to LPC_RGU->RESET_CTRL0 */
*(RESET_CONTROL+0) = 0x10DF0000;
/* GPIO_RST|AES_RST|ETHERNET_RST|SDIO_RST|DMA_RST|
* USB1_RST|USB0_RST|LCD_RST */
/* Write to LPC_RGU->RESET_CTRL1 */
*(RESET_CONTROL+1) = 0x00DFF7FF;
/* CAN0_RST|CAN1_RST|I2S_RST|SSP1_RST|SSP0_RST|
* I2C1_RST|I2C0_RST|UART3_RST|UART1_RST|UART1_RST|UART0_RST|
* DAC_RST|ADC1_RST|ADC0_RST|QEI_RST|MOTOCONPWM_RST|SCT_RST|
* RITIMER_RST|TIMER3_RST|TIMER2_RST|TIMER1_RST|TIMER0_RST */
/* Clear all pending interrupts in the NVIC */
for (irqPendLoop = 0; irqPendLoop < 8; irqPendLoop++) {
*(NVIC_ICPR + irqPendLoop) = 0xFFFFFFFF;
}
__asm volatile ("cpsie i"); /* Re-enable interrupts */
/* Init sections */
SectionTableAddr = &__data_section_table;
/* Copy the data sections from flash to SRAM */
while (SectionTableAddr < &__data_section_table_end) {
LoadAddr = *SectionTableAddr++;
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
memcpy32((uint32_t*)LoadAddr, (uint32_t*)ExeAddr, SectionLen);
}
/* Zero fill the bss segment */
while (SectionTableAddr < &__bss_section_table_end) {
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
meminit32((uint32_t*)ExeAddr, SectionLen);
}
#if defined(__FPU_PRESENT) && __FPU_PRESENT == 1
fpuInit();
#endif
/* Board specific SystemInit */
Board_SystemInit();
/* Start main */
#if defined (__REDLIB__)
/* Call the Redlib library, which in turn calls main() */
extern void __main(void);
__main() ;
#else
extern void main(void);
main();
#endif
/* Application has ended, so busy wait */
while(1) {};
}
/* Vector Exception/Interrupt Handlers */
__attribute__ ((section(".after_vectors")))
static void Default_Handler(void)
{
/* Loop forever */
while(1);
}
void HardFault_HandlerC( uint32_t *hardfault_args )
{
/* These are volatile to try and prevent the compiler/linker optimizing them
away as the variables never actually get used. If the debugger won't show the
values of the variables, make them global my moving their declaration outside
of this function. */
volatile uint32_t stacked_r0;
volatile uint32_t stacked_r1;
volatile uint32_t stacked_r2;
volatile uint32_t stacked_r3;
volatile uint32_t stacked_r12;
volatile uint32_t stacked_lr;
volatile uint32_t stacked_pc;
volatile uint32_t stacked_psr;
volatile uint32_t _CFSR;
volatile uint32_t _HFSR;
volatile uint32_t _DFSR;
volatile uint32_t _AFSR;
volatile uint32_t _BFAR;
volatile uint32_t _MMAR;
stacked_r0 = ((uint32_t)hardfault_args[0]);
stacked_r1 = ((uint32_t)hardfault_args[1]);
stacked_r2 = ((uint32_t)hardfault_args[2]);
stacked_r3 = ((uint32_t)hardfault_args[3]);
stacked_r12 = ((uint32_t)hardfault_args[4]);
stacked_lr = ((uint32_t)hardfault_args[5]);
stacked_pc = ((uint32_t)hardfault_args[6]);
stacked_psr = ((uint32_t)hardfault_args[7]);
/* Configurable Fault Status Register */
/* Consists of MMSR, BFSR and UFSR */
_CFSR = (*((volatile uint32_t *)(0xE000ED28)));
/* Hard Fault Status Register */
_HFSR = (*((volatile uint32_t *)(0xE000ED2C)));
/* Debug Fault Status Register */
_DFSR = (*((volatile uint32_t *)(0xE000ED30)));
/* Auxiliary Fault Status Register */
_AFSR = (*((volatile uint32_t *)(0xE000ED3C)));
/* Read the Fault Address Registers. These may not contain valid values. */
/* Check BFARVALID/MMARVALID to see if they are valid values */
/* MemManage Fault Address Register */
_MMAR = (*((volatile uint32_t *)(0xE000ED34)));
/* Bus Fault Address Register */
_BFAR = (*((volatile uint32_t *)(0xE000ED38)));
printf ("\n\nHard fault handler (all numbers in hex):\n");
printf ("R0 = %x\n", stacked_r0);
printf ("R1 = %x\n", stacked_r1);
printf ("R2 = %x\n", stacked_r2);
printf ("R3 = %x\n", stacked_r3);
printf ("R12 = %x\n", stacked_r12);
printf ("LR [R14] = %x subroutine call return address\n", stacked_lr);
printf ("PC [R15] = %x program counter\n", stacked_pc);
printf ("PSR = %x\n", stacked_psr);
printf ("CFSR = %x\n", _CFSR);
printf ("HFSR = %x\n", _HFSR);
printf ("DFSR = %x\n", _DFSR);
printf ("AFSR = %x\n", _AFSR);
printf ("MMAR = %x\n", _MMAR);
printf ("BFAR = %x\n", _BFAR);
/* Break into the debugger */
__asm("BKPT #0\n");
}
__attribute__( ( naked, section(".after_vectors") ) )
void HardFault_Handler(void)
{
__asm volatile
(
" tst lr, #4 \n"
" ite eq \n"
" mrseq r0, msp \n"
" mrsne r0, psp \n"
" ldr r1, [r0, #24] \n"
" ldr r2, handler2_address_const \n"
" bx r2 \n"
" handler2_address_const: .word HardFault_HandlerC \n"
);
}
/* Forward declaration of IRQ handlers */
#define ALIAS(f) __attribute__ ((weak, alias (#f)))
void NMI_Handler(void) ALIAS(Default_Handler);
void MemManage_Handler(void) ALIAS(Default_Handler);
void BusFault_Handler(void) ALIAS(Default_Handler);
void UsageFault_Handler(void) ALIAS(Default_Handler);
void SVC_Handler(void) ALIAS(Default_Handler);
void DebugMon_Handler(void) ALIAS(Default_Handler);
void PendSV_Handler(void) ALIAS(Default_Handler);
void SysTick_Handler(void) ALIAS(Default_Handler);
void DAC_IRQHandler(void) ALIAS(Default_Handler);
void DMA_IRQHandler(void) ALIAS(Default_Handler);
void FLASHEEPROM_IRQHandler(void) ALIAS(Default_Handler);
void ETH_IRQHandler(void) ALIAS(Default_Handler);
void SDIO_IRQHandler(void) ALIAS(Default_Handler);
void LCD_IRQHandler(void) ALIAS(Default_Handler);
void USB0_IRQHandler(void) ALIAS(Default_Handler);
void USB1_IRQHandler(void) ALIAS(Default_Handler);
void SCT_IRQHandler(void) ALIAS(Default_Handler);
void RIT_IRQHandler(void) ALIAS(Default_Handler);
void TIMER0_IRQHandler(void) ALIAS(Default_Handler);
void TIMER1_IRQHandler(void) ALIAS(Default_Handler);
void TIMER2_IRQHandler(void) ALIAS(Default_Handler);
void TIMER3_IRQHandler(void) ALIAS(Default_Handler);
void MCPWM_IRQHandler(void) ALIAS(Default_Handler);
void ADC0_IRQHandler(void) ALIAS(Default_Handler);
void I2C0_IRQHandler(void) ALIAS(Default_Handler);
void I2C1_IRQHandler(void) ALIAS(Default_Handler);
void ADC1_IRQHandler(void) ALIAS(Default_Handler);
void SSP0_IRQHandler(void) ALIAS(Default_Handler);
void SSP1_IRQHandler(void) ALIAS(Default_Handler);
void UART0_IRQHandler(void) ALIAS(Default_Handler);
void UART1_IRQHandler(void) ALIAS(Default_Handler);
void UART2_IRQHandler(void) ALIAS(Default_Handler);
void UART3_IRQHandler(void) ALIAS(Default_Handler);
void I2S0_IRQHandler(void) ALIAS(Default_Handler);
void I2S1_IRQHandler(void) ALIAS(Default_Handler);
void SPIFI_IRQHandler(void) ALIAS(Default_Handler);
void SGPIO_IRQHandler(void) ALIAS(Default_Handler);
void GPIO0_IRQHandler(void) ALIAS(Default_Handler);
void GPIO1_IRQHandler(void) ALIAS(Default_Handler);
void GPIO2_IRQHandler(void) ALIAS(Default_Handler);
void GPIO3_IRQHandler(void) ALIAS(Default_Handler);
void GPIO4_IRQHandler(void) ALIAS(Default_Handler);
void GPIO5_IRQHandler(void) ALIAS(Default_Handler);
void GPIO6_IRQHandler(void) ALIAS(Default_Handler);
void GPIO7_IRQHandler(void) ALIAS(Default_Handler);
void GINT0_IRQHandler(void) ALIAS(Default_Handler);
void GINT1_IRQHandler(void) ALIAS(Default_Handler);
void EVRT_IRQHandler(void) ALIAS(Default_Handler);
void CAN1_IRQHandler(void) ALIAS(Default_Handler);
void ATIMER_IRQHandler(void) ALIAS(Default_Handler);
void RTC_IRQHandler(void) ALIAS(Default_Handler);
void WDT_IRQHandler(void) ALIAS(Default_Handler);
void CAN0_IRQHandler(void) ALIAS(Default_Handler);
void QEI_IRQHandler(void) ALIAS(Default_Handler);
/* Vectors */
extern void (* const g_pfnVectors[])(void);
__attribute__ ((used,section(".isr_vector")))
void (* const g_pfnVectors[])(void) =
{
// Core Level - CM3
&_vStackTop, // The initial stack pointer
ResetISR, // The reset handler
NMI_Handler, // The NMI handler
HardFault_Handler, // The hard fault handler
MemManage_Handler, // The MPU fault handler
BusFault_Handler, // The bus fault handler
UsageFault_Handler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
SVC_Handler, // SVCall handler
DebugMon_Handler, // Debug monitor handler
0, // Reserved
PendSV_Handler, // The PendSV handler
SysTick_Handler, // The SysTick handler
// Chip Level - LPC18
DAC_IRQHandler, // 16
0, // 17
DMA_IRQHandler, // 18
0, // 19
FLASHEEPROM_IRQHandler, // 20
ETH_IRQHandler, // 21
SDIO_IRQHandler, // 22
LCD_IRQHandler, // 23
USB0_IRQHandler, // 24
USB1_IRQHandler, // 25
SCT_IRQHandler, // 26
RIT_IRQHandler, // 27
TIMER0_IRQHandler, // 28
TIMER1_IRQHandler, // 29
TIMER2_IRQHandler, // 30
TIMER3_IRQHandler, // 31
MCPWM_IRQHandler, // 32
ADC0_IRQHandler, // 33
I2C0_IRQHandler, // 34
I2C1_IRQHandler, // 35
0, // 36
ADC1_IRQHandler, // 37
SSP0_IRQHandler, // 38
SSP1_IRQHandler, // 39
UART0_IRQHandler, // 40
UART1_IRQHandler, // 41
UART2_IRQHandler, // 42
UART3_IRQHandler, // 43
I2S0_IRQHandler, // 44
I2S1_IRQHandler, // 45
SPIFI_IRQHandler, // 46
SGPIO_IRQHandler, // 47
GPIO0_IRQHandler, // 48
GPIO1_IRQHandler, // 49
GPIO2_IRQHandler, // 50
GPIO3_IRQHandler, // 51
GPIO4_IRQHandler, // 52
GPIO5_IRQHandler, // 53
GPIO6_IRQHandler, // 54
GPIO7_IRQHandler, // 55
GINT0_IRQHandler, // 56
GINT1_IRQHandler, // 57
EVRT_IRQHandler, // 58
CAN1_IRQHandler, // 59
0, // 60
0, // 61
ATIMER_IRQHandler, // 62
RTC_IRQHandler, // 63
0, // 64
WDT_IRQHandler, // 65
0, // 66
CAN0_IRQHandler, // 67
QEI_IRQHandler, // 68
};

View File

@ -1,89 +0,0 @@
/*
* @brief Common SystemInit function for LPC18xx/LPC43xx chips
*
* @note
* Copyright(C) NXP Semiconductors, 2013
* All rights reserved.
*
* @par
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* LPC products. This software is supplied "AS IS" without any warranties of
* any kind, and NXP Semiconductors and its licensor disclaim any and
* all warranties, express or implied, including all implied warranties of
* merchantability, fitness for a particular purpose and non-infringement of
* intellectual property rights. NXP Semiconductors assumes no responsibility
* or liability for the use of the software, conveys no license or rights under any
* patent, copyright, mask work right, or any other intellectual property rights in
* or to any products. NXP Semiconductors reserves the right to make changes
* in the software without notification. NXP Semiconductors also makes no
* representation or warranty that such application will be suitable for the
* specified use without further testing or modification.
*
* @par
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors' and its
* licensor's relevant copyrights in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
*/
/*****************************************************************************
* Private types/enumerations/variables
****************************************************************************/
/*****************************************************************************
* Public types/enumerations/variables
****************************************************************************/
#if defined(NO_BOARD_LIB)
#include "chip.h"
const uint32_t ExtRateIn = 0;
const uint32_t OscRateIn = 12000000;
#else
#include "board.h"
#endif
/*****************************************************************************
* Private functions
****************************************************************************/
/*****************************************************************************
* Public functions
****************************************************************************/
/* Set up and initialize hardware prior to call to main */
void SystemInit(void)
{
#if defined(CORE_M3) || defined(CORE_M4)
unsigned int *pSCB_VTOR = (unsigned int *) 0xE000ED08;
#if defined(__IAR_SYSTEMS_ICC__)
extern void *__vector_table;
*pSCB_VTOR = (unsigned int) &__vector_table;
#elif defined(__CODE_RED)
extern void *g_pfnVectors;
*pSCB_VTOR = (unsigned int) &g_pfnVectors;
#elif defined(__ARMCC_VERSION)
extern void *__Vectors;
*pSCB_VTOR = (unsigned int) &__Vectors;
#endif
#if defined(__FPU_PRESENT) && __FPU_PRESENT == 1
fpuInit();
#endif
#if defined(NO_BOARD_LIB)
/* Chip specific SystemInit */
Chip_SystemInit();
#else
/* Board specific SystemInit */
Board_SystemInit();
#endif
#endif /* defined(CORE_M3) || defined(CORE_M4) */
}

View File

@ -17,8 +17,8 @@
****************************************************************************/
/* UART definitions */
#define LPC_UART LPC_USART0
#define UARTx_IRQn USART0_IRQn
#define LPC_UART LPC_USART0
#define UARTx_IRQn USART0_IRQn
/*****************************************************************************
@ -31,8 +31,8 @@ typedef struct func_args {
} func_args;
const char menu1[] = "\r\n"
"\tt. WolfSSL Test\r\n"
"\tb. WolfSSL Benchmark\r\n";
"\tt. WolfSSL Test\r\n"
"\tb. WolfSSL Benchmark\r\n";
/*****************************************************************************
* Private functions
@ -43,53 +43,53 @@ const char menu1[] = "\r\n"
****************************************************************************/
int main(void)
{
int opt = 0;
uint8_t buffer[1];
func_args args;
SystemCoreClockUpdate();
Board_Init();
Board_UART_Init(LPC_UART);
Chip_UART_Init(LPC_UART);
Chip_UART_SetBaud(LPC_UART, 115200);
Chip_UART_ConfigData(LPC_UART, UART_LCR_WLEN8 | UART_LCR_SBS_1BIT); /* Default 8-N-1 */
Chip_UART_TXEnable(LPC_UART);
Chip_UART_SetupFIFOS(LPC_UART, (UART_FCR_FIFO_EN | UART_FCR_RX_RS |
UART_FCR_TX_RS | UART_FCR_DMAMODE_SEL | UART_FCR_TRG_LEV0));
Chip_UART_IntEnable(LPC_UART, (UART_IER_ABEOINT | UART_IER_ABTOINT));
NVIC_SetPriority(UARTx_IRQn, 1);
NVIC_EnableIRQ(UARTx_IRQn);
int opt = 0;
uint8_t buffer[1];
func_args args;
Chip_OTP_Init();
SystemCoreClockUpdate();
Board_Init();
Board_UART_Init(LPC_UART);
Chip_UART_Init(LPC_UART);
Chip_UART_SetBaud(LPC_UART, 115200);
Chip_UART_ConfigData(LPC_UART, UART_LCR_WLEN8 | UART_LCR_SBS_1BIT); /* Default 8-N-1 */
Chip_UART_TXEnable(LPC_UART);
Chip_UART_SetupFIFOS(LPC_UART, (UART_FCR_FIFO_EN | UART_FCR_RX_RS |
UART_FCR_TX_RS | UART_FCR_DMAMODE_SEL | UART_FCR_TRG_LEV0));
Chip_UART_IntEnable(LPC_UART, (UART_IER_ABEOINT | UART_IER_ABTOINT));
NVIC_SetPriority(UARTx_IRQn, 1);
NVIC_EnableIRQ(UARTx_IRQn);
while (1) {
DEBUGOUT("\r\n\t\t\t\tMENU\r\n");
DEBUGOUT(menu1);
DEBUGOUT("Please select one of the above options: ");
Chip_OTP_Init();
opt = 0;
while (opt == 0) {
opt = Chip_UART_Read(LPC_UART, buffer, sizeof(buffer));
}
while (1) {
DEBUGOUT("\r\n\t\t\t\tMENU\r\n");
DEBUGOUT(menu1);
DEBUGOUT("Please select one of the above options: ");
switch (buffer[0]) {
opt = 0;
while (opt == 0) {
opt = Chip_UART_Read(LPC_UART, buffer, sizeof(buffer));
}
case 't':
memset(&args, 0, sizeof(args));
printf("\nCrypt Test\n");
wolfcrypt_test(&args);
printf("Crypt Test: Return code %d\n", args.return_code);
break;
switch (buffer[0]) {
case 'b':
memset(&args, 0, sizeof(args));
printf("\nBenchmark Test\n");
benchmark_test(&args);
printf("Benchmark Test: Return code %d\n", args.return_code);
break;
case 't':
memset(&args, 0, sizeof(args));
printf("\nCrypt Test\n");
wolfcrypt_test(&args);
printf("Crypt Test: Return code %d\n", args.return_code);
break;
// All other cases go here
default: DEBUGOUT("\r\nSelection out of range\r\n"); break;
}
}
case 'b':
memset(&args, 0, sizeof(args));
printf("\nBenchmark Test\n");
benchmark_test(&args);
printf("Benchmark Test: Return code %d\n", args.return_code);
break;
// All other cases go here
default: DEBUGOUT("\r\nSelection out of range\r\n"); break;
}
}
}